PAPER : IIT-JAM

MATHEMATICS MA-2020

SECTION-A

[Multiple Choice Questions (MCQ)]

Q. 1 - Q. 10 carry ONE mark each.

1. Let $f(x)=2 x^{3}-9 x^{2}+7$. Which of the following is true ?
(a) fis one-one in the interval $[-1,1]$
(b) fis one-one in the interval [2,4]
(c) fis not one-one in the interval $[-4,0]$
(d) f is not one-one in the interval $[0,4]$
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by $T(x, y)=(-x, y)$. Then
(a) $T^{2 k}=T$ for all $k \geq 1$
(b) $T^{2 k+1}=-T$ for all $k \geq 1$
(c) The range of T^{2} is a proper subspace of the range of T
(d) The range of T^{2} is equal to the range of T
3. If $u=x^{3}$ and $v=y^{2}$ tansfrom the differential equation $3 x^{5} d x-y\left(y^{2}-x^{3}\right) d y=0$ to $\frac{d v}{d u}=\frac{\alpha u}{2(u-v)}$, then α is
(a) 4
(b) 2
(c) -2
(d) -4
4. Which of the following is False?
(a) $\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=0$
(b) $\lim _{x \rightarrow 0^{+}} \frac{1}{x e^{1 / x}}=0$
(c) $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{1+2 x}=0$
(d) $\lim _{x \rightarrow 0^{+}} \frac{\cos x}{1+2 x}=0$
5. The radius of convergence of the power series $\sum_{n=1}^{\infty}\left(\frac{n+2}{n}\right)^{n^{2}} x^{n}$ is
(a) e^{2}
(b) $\frac{1}{\sqrt{e}} C R$ CND(
(c) $\frac{1}{e}$
(d) $\frac{1}{e^{2}}$
6. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function. If $f(x, y)=g(y)+x g^{\prime}(y)$, then
(a) $\frac{\partial f}{\partial x}+y \frac{\partial^{2} f}{\partial x d y}=\frac{\partial f}{\partial y}$
(b) $\frac{\partial f}{\partial y}+y \frac{\partial^{2} f}{\partial x d y}=\frac{\partial f}{\partial x}$
(c) $\frac{\partial f}{\partial x}+x \frac{\partial^{2} f}{\partial x d y}=\frac{\partial f}{\partial y}$
(d) $\frac{\partial f}{\partial y}+x \frac{\partial^{2} f}{\partial x d y}=\frac{\partial f}{\partial x}$
7. Let $s_{n}=1+\frac{(-1)^{n}}{n}, n \in \mathbb{N}$. Then the sequence $\left\{s_{n}\right\}$ is
(a) monotonically increasing and is convergent to 1
(b) monotonically decreasing and is convergent to 1
(c) neither monotonically increasing nor monotonically decreasing but is convergent to 1
(d) divergent
8. Consider the following group under matrix multiplication
$H=\left\{\left[\begin{array}{lll}1 & p & q \\ 0 & 1 & r \\ 0 & 0 & 1\end{array}\right]: p, q r \in \mathbb{R}\right\}$
Then the center of the group is isomorphic to
(a) $(\mathbb{R} \backslash\{0\}, \times)$
(b) $(\mathbb{R},+)$
(c) $\left(\mathbb{R}^{2},+\right)$
(d) $(\mathbb{R},+) \times(\mathbb{R} \backslash\{0\}, \times)$
9. If the directional derivative of the function $z=y^{2} e^{2 x}$ at $(2,-1)$ along the unit vactor $\vec{b}=\alpha \hat{i}+\beta \hat{j}$ is zero, then $|\alpha+\beta|$ equals.
(a) $\frac{1}{2 \sqrt{2}}$
(b) $\frac{1}{\sqrt{2}}$
(c) $\sqrt{2}$
(d) $2 \sqrt{2}$
10. If the equation of the tangent plane to the surface $z=16-x^{2}-y^{2}$ at the point $P(1,3,6)$ is $a x+b y+c z+d=0$. Then the value of $|d|$ is
(a) 16
(b) 26
(c) 36
(d) 46
11. Let M be a 4×3 real matrix and let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis of \mathbb{R}^{3}. which of the following is true ?
(a) If $\operatorname{rank}(M)=1$, then $\left\{M e_{1}, M e_{2}\right\}$ is a linearly independent set
(b) If $\operatorname{rank}(M)=2$, then $\left\{M e_{1}, M e_{2}\right\}$ is a linearly independent set
(c) If $\operatorname{rank}(M)=2$, then $\left\{M e_{1}, M e_{3}\right\}$ is a linearly independent set
(d) If $\operatorname{rank}(M)=3$, then $\left\{M e_{1}, M e_{3}\right\}$ is a linearly independent set
12. Let $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ be the circle group under multiplication and $i=\sqrt{-1}$. Then the set $\left\{\theta \in \mathbb{R}:\left\langle e^{i 2 \pi \theta}\right\rangle\right.$ is infinite $\}$ is
(a) empty
(b) non- empty and finite
(c) countably infinite
(d) uncountable
13. Define $s_{1}=\alpha>0$ and $s_{n+1}=\sqrt{\frac{1+s_{n}^{2}}{1+\alpha}}, n \geq 1$. Which of the following is true?
(a) If $s_{n}^{2}<\frac{1}{\alpha}$, then $\left\{s_{n}\right\}$ is monotonically increasing and $\lim _{n \rightarrow \infty} s_{n}=\frac{1}{\sqrt{\alpha}}$
(b) If $s_{n}^{2}<\frac{1}{\alpha}$, then $\left\{s_{n}\right\}$ is monotonically decreasing and $\lim _{n \rightarrow \infty} s_{n}=\frac{1}{\alpha}$
(c) If $s_{n}^{2}>\frac{1}{\alpha}$, then $\left\{s_{n}\right\}$ is monotonically increasing and $\lim _{n \rightarrow \infty} s_{n}=\frac{1}{\sqrt{\alpha}}$
(d) If $s_{n}^{2}>\frac{1}{\alpha}$, then $\left\{s_{n}\right\}$ is monotonically decreasing and $\lim _{n \rightarrow \infty} s_{n}=\frac{1}{\alpha}$
14. Let M be a real 6×6 matrix. Let 2 and -1 be two eigenvalues of M. If $M^{5}=a I+b M$, where $a, b \in \mathbb{R}$, then
(a) $a=10, b=11$
(b) $a=-11, b=10$
(c) $a=-10, b=11$
(d) $a=-10, b=-11$
15. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $f\left(\frac{1}{2}\right)=-\frac{1}{2}$ and $|f(x)-f(y)-(x-y)| \leq \sin \left(|x-y|^{2}\right)$ for all $x, y \in[0,1]$. Then $\int_{0}^{1} f(x) d x$ is
(a) $-\frac{1}{2}$
(b) $-\frac{1}{4}$
(c) $\frac{1}{4}$
(d) $\frac{1}{2}$
16. Let $f(x, y)=\left\{\begin{array}{cc}x^{2} \sin \frac{1}{x}+y^{2} \sin \frac{1}{y}, & x y \neq 0 \\ x^{2} \sin \frac{1}{x}, & x \neq 0, y=0 \\ y^{2} \sin \frac{1}{y}, & y \neq 0, x=0 \\ 0, & x=y=0\end{array}\right.$

Which of the following is true at $(0,0)$?
(a) f is not continuous
(b) $\frac{\partial f}{\partial x}$ is continuous but $\frac{\partial f}{\partial y}$ is not continuous
(c) f is not differentiable
(d) f is differentiable but both $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are not continuous
17. Suppose that S is the sum of a convergent series $\sum_{n=1}^{\infty} a_{n}$. Define $t_{n}=a_{n}+a_{n+1}+a_{n+2}$. Then the series $\sum_{n=1}^{\infty} t_{n}$
(a) diverges
(b) converges to $3 S-a_{1}-a_{2}$
(c) converges to $3 S-a_{1}-2 a_{2}$
(d) converges to $3 S-2 a_{1}-a_{2}$
18. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}, x, y, z \in \mathbb{R}$. Which of the following is False ?
(a) $\nabla(\vec{a} \cdot \vec{r})=\vec{a}$
(b) $\nabla(\vec{a} \times \vec{r})=0$
(c) $\nabla \times(\vec{a} \times \vec{r})=\vec{a}$
(d) $\nabla \cdot((\vec{a} \cdot \vec{r}) \vec{r})=4(\vec{a} \cdot \vec{r})$
19. Let $F=\left\{\omega \in \mathbb{C}: \omega^{2020}=1\right\}$. Consider the groups

$$
G=\left\{\left(\begin{array}{ll}
\omega & z \\
0 & 1
\end{array}\right): \omega \in F, z \in \mathbb{C}\right\} \text { and } H=\left\{\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right): z \in \mathbb{C}\right\}
$$

under matrix multiplication. Then the number of cosets of H in G is
(a) 1010
(b) 2019
(c) 2020
(d) infinite
20. Let $f(x, y, z)=x^{3}+y^{3}+z^{3}-3 x y z$. A point at which the gradient of the function f is equal to zero is
(a) $(-1,1,-1)$
(b) $(-1,-1,-1)$
(c) $(-1,1,1)$
(d) $(1,-1,1)$
21. Let $a \in \mathbb{R}$. If $f(x)= \begin{cases}(x+a)^{2} & , x \leq 0 \\ (x+a)^{3} & , x>0\end{cases}$
then
(a) $\frac{d^{2} f}{d x^{2}}$ does not exist at $x=0$ for any value of a
(b) $\frac{d^{2} f}{d x^{2}}$ exists at $x=0$ for exactly one value of a
(c) $\frac{d^{2} f}{d x^{2}}$ exists at $x=0$ for exactly two values of a
(d) $\frac{d^{2} f}{d x^{2}}$ exists at $x=0$ for infinitely many values of a
22. A solution of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}-y=0, x>0$ that passes through the point $(1,1)$ is
(a) $y=\frac{1}{x}$
(b) $y=\frac{1}{x^{2}}$
(c) $y=\frac{1}{\sqrt{x}}$
(d) $y=\frac{1}{x^{3 / 2}}$
23. Consider the differential equation $L[y]=\left(y-y^{2}\right) d x+x d y=0$. The function $f(x, y)$ is said to be an integrating factor of the equation if $f(x, y) L[y]=0$ becomes exact. If $f(x, y)=\frac{1}{x^{2} y^{2}}$, then
(a) f is an integrating factor and $y=1-k x y, k \in \mathbb{R}$ is NOT its general solution
(b) f is an integrating factor and $y=-1+k x y, k \in \mathbb{R}$ is its general solution
(c) f is an integrating factor and $y=-1+k x y, k \in \mathbb{R}$ is NOT its general solution
(d) f is NOT an integrating factor and $y=1+k x y, k \in \mathbb{R}$ is its general solution
24. Let M be an $n \times n(n \geq 2)$ non-zero real matrix with $M^{2}=0$ and let $\alpha \in \mathbb{R} \backslash\{0\}$. Then
(a) α is only eigenvalue of $(M+\alpha I)$ and $(M-\alpha I)$
(b) α is only eigenvalue of $(M+\alpha l)$ and $(\alpha I-M)$
(c) $-\alpha$ is the only eigenvalue of $(M+\alpha l)$ and $(M-\alpha l)$
(d) $-\alpha$ is only eigenvalue of $(M+\alpha I)$ and $(\alpha I-M)$
25. Let $\left\{a_{n}\right\}$ be a sequence of positive real numbers. Suppose that $l=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$. which of the following is true ?
(a) If $l=1$, then $\lim _{n \rightarrow \infty} a_{n}=1$
(b) If $l=1$, then $\lim _{n \rightarrow \infty} a_{n}=0$
(c) If $l<1$, then $\lim _{n \rightarrow \infty} a_{n}=1$
(d) If $l<1$, then $\lim _{n \rightarrow \infty} a_{n}=0$
26. Let $D=\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y| \leq 1\right\}$ and $f: D \rightarrow \mathbb{R}$ be a non- constant continuous function. Which of the following is TRUE ?
(a) The range of f is unbounded
(b) The range of f is a union of open intervals
(c) The range of f is a closed interval
(d) the range of f is a union of at least two disjoint closed intervals
27. The area bounded by the curves $x^{2}+y^{2}=2 x$ and $x^{2}+y^{2}=4 x$, and the straight lines $y=x$ and $y=0$ is
(a) $3\left(\frac{\pi}{2}+\frac{1}{4}\right)$
(b) $3\left(\frac{\pi}{4}+\frac{1}{2}\right)$
(c) $2\left(\frac{\pi}{4}+\frac{1}{3}\right)$
(d) $2\left(\frac{\pi}{3}+\frac{1}{4}\right)$
28. Let S be the surface of the portion of the sphere with centre at the origin and radius 4 , above the xy-plane.

Let $\vec{F}=y \hat{i}-x \hat{j}+y x^{3} \hat{k}$. if \hat{n} is the unit outward normal to S , Then $\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d S$ equals
(a) -32π
(b) -16π
(c) 16π
(d) 32π
29. The value of the triple integral $\iiint_{V}\left(x^{2} y+1\right) d x d y d z$, where V is the region given by $x^{2}+y^{2} \leq 1,0 \leq z \leq 2$ is
(a) π
(b) 2π
(c) 3π
(d) 4π
30. Let S be the part of the $\operatorname{cone} z^{2}=x^{2}+y^{2}$ between the planes $\mathrm{z}=0$ and $\mathrm{z}=1$. Then the value of the surface integral $\iint_{S}\left(x^{2}+y^{2}\right) d S$ is
(a) π
(b) $\frac{\pi}{\sqrt{2}}$
(c) $\frac{\pi}{\sqrt{3}}$
(d) $\frac{\pi}{2}$

SECTION-B

[Multiple Select Questions (MSQ)]

Q. 31 - Q. 40 carry TWO marks each.

31. Let $a=\lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}}+\frac{2}{n^{2}}+. .+\frac{(n-1)}{n^{2}}\right)$ and $b=\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+. .+\frac{1}{n+n}\right)$ which of the following is/are true?
(a) $a>b$
(b) $a<b$
(c) $a b=\ln \sqrt{2}$
(d) $\frac{a}{b}=\ln \sqrt{2}$
32. Let $L[y]=x^{2} \frac{d^{2} y}{d x^{2}}+p x \frac{d y}{d x}+q y$, where p, q are real constants Let $y_{1}(x)$ and $y_{2}(x)$ be two solution of $L[y]=0, x>0$ that satisfy $y_{1}\left(x_{0}\right)=1, y_{1}^{\prime}\left(x_{0}\right)=0, y_{2}\left(x_{0}\right)=0$ and $y_{2}^{\prime}\left(x_{0}\right)=1$ for some $x_{0}>0$. Then,
(a) $y_{1}(x)$ is not a constant multiple of $y_{2}(x)$
(b) $y_{1}(x)$ is constant multiple of $y_{2}(x)$
(c) $1, \ln x$ are solutions of $L[y]=0$ when $p=1, q=0$
(d) $x, \ln x$ are solutions of $L[y]=0$ when $p+q \neq 0$
33. Cosider the following system of linear equations $x+y+5 z=3, x+2 y+m z=5$ and $x+2 y+4 z=k$. The system is consistent if
(a) $m \neq 4$
(b) $k \neq 5$
(c) $m=4$
(d) $k=5$
34. Let $a, b \in \mathbb{R}$ and $a<b$. Which of the following statement(s) is/are true?
(a) There exists a continuous function $f:[a, b] \rightarrow(a, b)$ such that f is one-one
(b) There exists a continuous function $f:[a, b] \rightarrow(a, b)$ such that f is onto
(c) There exists a continuous function $f:(a, b) \rightarrow[a, b]$ such that f is one-one
(d) There exists a continuous function $f:(a, b) \rightarrow[a, b]$ such that f is onto
35. Let $a, b, c \in \mathbb{R}$ such that $\mathrm{a}<\mathrm{b}<\mathrm{c}$. Which of the following is/are true for any continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(a)=b, f(b)=c$ and $f(c)=a$?
(a) There exist $\alpha \in(a, c)$ such that $f(\alpha)=\alpha$
(b) There exist $\beta \in(a, b)$ such that $f(\beta)=\beta$
(c) There exists $\gamma \in(a, b)$ such that $(f \circ f)(\gamma)=\gamma$
(d) There exists $\delta \in(a, c)$ such that $(f \circ f \circ f)(\delta)=\delta$
36. Let V be a non-zero vector space over a field F . Let $S \subset V$ be a non-empty set. Consider the following properties of S :
(I) For any vector space W over F , any map $f: S \rightarrow W$ extends to a linear map from V to W .
(II) For any vector space W over F and any two lienar maps $f, g: V \rightarrow W$ satisfying $f(s)=g(s)$ for all $s \in S$ we have $f(v)=g(v)$ for all $v \in V$,
(III) S is linearly independent
(IV) The span of S is V

Which of the following statement (s) is/are True ?
(a) (I) implies (IV)
(b) (I) implies (III)
(c) (II) implies (III)
(d) (II) implies (IV)
37. If $s_{n}=\frac{(-1)^{n}}{2^{n}+3}$ and $t_{n}=\frac{(-1)^{n}}{4 n-1}, n=0,1,2, \ldots$, then
(a) $\sum_{n=0}^{\infty} s_{n}$ is absolutely convergent
(b) $\sum_{n=0}^{\infty} t_{n}$ is absolutely convergent
(c) $\sum_{n=0}^{\infty} s_{n}$ is conditionally convergent
(d) $\sum_{n=0}^{\infty} t_{n}$ is conditionally convergent
38. Let f be a real valued function of a real variable, such that $\left|f^{(n)}(0)\right| \leq K$ for all $n \in \mathbb{N}$, where $\mathrm{K}>0$. Which of the following is/are true?
(a) $\left|\frac{f^{(n)}(0)}{n!}\right|^{\frac{1}{n}} \rightarrow 0$ as $n \rightarrow \infty$
(b) $\left|\frac{f^{(n)}(0)}{n!}\right|^{\frac{1}{n}} \rightarrow \infty$ as $n \rightarrow \infty$
(c) $f^{(n)}(x)$ exists for all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}$
(d) The series $\sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{(n-1)!}$ is absolutely convergent
39. Let G be a group with identity e. Let H be an abelian non-trivial proper subgroup of G with the property that $H \cap g H g^{-1}=\{e\}$ for all $g \notin H . K=\{g \in G ; g h=h g \forall h \in H\}$, then
(a) K is a proper subgroup of H
(b) H is a proper subgroup of K
(c) $\mathrm{K}=\mathrm{H}$
(d) There exists no abelian subgroup $L \subseteq G$ such that K is a proper subgroup of L
40. Let S be that part of the surface of the paraboloid $z=16-x^{2}-y^{2}$ which is above the plane $\mathrm{z}=0$ and D be its projection on the $x y$-plane. Then the area of S equals
(a) $\iint_{D} \sqrt{1+4\left(x^{2}+y^{2}\right)} d x d y$
(b) $\iint_{D} \sqrt{1+2\left(x^{2}+y^{2}\right)} d x d y$
(c) $\int_{0}^{2 \pi} \int_{0}^{4} \sqrt{1+4 r^{2}} d r d \theta$
(d) $\int_{0}^{2 \pi} \int_{0}^{4} \sqrt{1+4 r^{2}} r d r d \theta$

SECTION-C

[Numerical Answer Type (NAT)]

Q. 41 - Q. 50 carry ONE mark each.

41. Let $\phi: S_{3} \rightarrow S^{1}$ be a non-trivial non- injective group homomorphism. Then the number of elements in the kernel of ϕ is \qquad -
42. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f, f^{\prime}, f^{\prime \prime}$ are continuous functions with $f>0, f^{\prime}>0$ and $f^{\prime \prime}>0$. Then $\lim _{x \rightarrow \infty} \frac{f(x)+f^{\prime}(x)}{2}$ is \qquad
43. Let $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ and $f: S \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{1}{x}$, then $\max \left\{\delta:\left|x-\frac{1}{3}\right|<\delta \Rightarrow\left|f(x)-f\left(\frac{1}{3}\right)\right|<1\right\}$ is \qquad (upto two decimal places)
44. Let $f(x, y)=0$ be a solution of the homogeneous differential equation $(2 x+5 y) d x-(x+3 y) d y=0$ If $f(x+\alpha, y-3)=0$ is a solution of the differential equation $(2 x+5 y-1) d x+(2-x-3 y) d y=0$ then the value of α is \qquad
45. Consider the real vector space $P_{2020}=\left\{\sum_{i=0}^{n} a_{i} x^{i} ; a_{i} \in \mathbb{R}\right.$ and $\left.0 \leq \mathrm{n} \leq 2020\right\}$. Let W be the subspace given by $W=\left\{\sum_{i=0}^{n} a_{i} x^{i} \in P_{2020} ; a_{i}=0\right.$ for all odd $\left.i\right\}$, Then the dimension of W is \qquad
46. Let $\vec{F}=x \hat{i}+y \hat{j}+z \hat{k}$ and S be the sphere given by $(x-2)^{2}+(y-2)^{2}+(z-2)^{2}=4$. If \hat{n} is the unit outward normal to S, then $\frac{1}{\pi} \iint_{S} \vec{F} \cdot \hat{n} d S$ is ENDEAVOUR
47. If $\int_{0}^{1} \int_{2 y}^{2} e^{x^{2}} d x d y=k\left(e^{4}-1\right)$, then k equals \qquad
48. Let $x_{n}=n^{\frac{1}{n}}$ and $y_{n}=e^{1-x_{n}}, n \in \mathbb{N}$. Then the value of $\lim y_{n}$ is \qquad
49. Consider the differential equation $\frac{d y}{d x}+10 y=f(x), x>0$. Where $f(x)$ is a continuous function such that $\lim _{x \rightarrow \infty} f(x)=1$. Then the value of $\lim _{x \rightarrow \infty} y(x)$ is \qquad
50. Let $f(x, y)=e^{x} \sin y, x=t^{3}+1$ and $y=t^{4}+t$. Then $\frac{d f}{d t}$ at $t=0$ is \qquad (upto two decimal places)

Q. 51 - Q. 60 carry TWO marks each.

51. Let $T: \mathbb{R}^{7} \rightarrow \mathbb{R}^{7}$ be a linear tranformation with nullity $(\mathrm{T})=2$. Then, the minimum possible value for Rank (T^{2}) is \qquad
52. Let $M=\left[\begin{array}{cccc}9 & 2 & 7 & 1 \\ 0 & 7 & 2 & 1 \\ 0 & 0 & 11 & 6 \\ 0 & 0 & -5 & 0\end{array}\right]$. Then, the value of $\operatorname{det}\left((8 \mathrm{I}-\mathrm{M})^{3}\right)$ is \qquad
53. Consider the expansion of the function $f(x)=\frac{3}{(1-x)(1+2 x)}$ in powers of x, that is valid in $|x|<\frac{1}{2}$. Then the coefficient of x^{4} is \qquad
54. Suppose that G is a group of order 57 which is NOT cyclic. If G contains a unique subgroup H of order 19 , then for any $g \notin H, o(g)$ is \qquad
55. The minimum value of the function $f(x, y)=x^{2}+x y+y^{2}-3 x-6 y+11$ is \qquad
56. Let C be the boundary of the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$ oriented in the counter clockwise sense. Then the value of the line integral $\oint_{C} x^{2} y^{2} d x+\left(x^{2}-y^{2}\right) d y$ is \qquad (upto twodecimal places)
57. Let $f(x)=\sqrt{x}+\alpha x, x>0$ and $g(x)=a_{0}+a_{1}(x-1)+a_{2}(x-1)^{2}$ be the sum of first three terms of the Taylor series of $f(x)$ around $x=1$. If $g(3)=3$, then α is
58. If $x^{2}+x y^{2}=c$ where $c \in \mathbb{R}$, is the general solution of the exact differential equation $M(x, y) d x+2 x y d y=0$ then $\mathrm{M}(1,1)$ is \qquad
59. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function with $f^{\prime}(x)=f(x)$ for all x, Suppose that $f(\alpha x)$ and $f(\beta x)$ are two non-zero solution of the differential equation $4 \frac{d^{2} y}{d x^{2}}-p \frac{d \bar{y}}{d x}+3 y=0$ satisfying $f(\alpha x) f(\beta x)=f(2 x)$ and $f(\alpha x) f(-\beta x)=f(x)$ then the value of p is \qquad
60. The sum of the series $\frac{1}{2\left(2^{2}-1\right)}+\frac{1}{3\left(3^{2}-1\right)}+\frac{1}{4\left(4^{2}-1\right)}+\ldots$ is \qquad
**** END****
