PAPER : IIT-JAM

MATHEMATICS MA-2020

SECTION-A [Multiple Choice Questions (MCQ)] Q.1 – Q.10 carry ONE mark each. Let $f(x) = 2x^3 - 9x^2 + 7$. Which of the following is true? 1. (a) f is one-one in the interval [-1,1] (b) f is one-one in the interval [2,4] (c) f is not one-one in the interval [-4,0](d) f is not one-one in the interval [0,4]Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by T(x, y) = (-x, y). Then 2. (a) $T^{2k} = T$ for all $k \ge 1$ (b) $T^{2k+1} = -T$ for all $k \ge 1$ (c) The range of T^2 is a proper subspace of the range of T (d) The range of T^2 is equal to the range of T If $u = x^3$ and $v = y^2$ tansfrom the differential equation $3x^5 dx - y(y^2 - x^3) dy = 0$ to $\frac{dv}{du} = \frac{\alpha u}{2(u-v)}$, 3. then α is (c)-2 (d) -4 (a) 4 (b) 2 4. Which of the following is False? (b) $\lim_{x \to 0^+} \frac{1}{xe^{1/x}} = 0$ (c) $\lim_{x \to 0^+} \frac{\sin x}{1 + 2x} = 0$ (d) $\lim_{x \to 0^+} \frac{\cos x}{1 + 2x} = 0$ (a) $\lim_{x\to\infty}\frac{x}{\rho^x}=0$ The radius of convergence of the power series $\sum_{n=1}^{\infty} \left(\frac{n+2}{n}\right)^{n^2} x^n$ is 5. (b) $\frac{1}{\sqrt{e}}$ **ER END** (c) $\frac{1}{e}$ (d) $\frac{1}{e^2}$ (a) ρ^2 Let $g : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function. If f(x, y) = g(y) + xg'(y), then 6. (a) $\frac{\partial f}{\partial x} + y \frac{\partial^2 f}{\partial x dy} = \frac{\partial f}{\partial y}$ (b) $\frac{\partial f}{\partial y} + y \frac{\partial^2 f}{\partial x dy} = \frac{\partial f}{\partial x}$ (c) $\frac{\partial f}{\partial x} + x \frac{\partial^2 f}{\partial x dy} = \frac{\partial f}{\partial y}$ (d) $\frac{\partial f}{\partial y} + x \frac{\partial^2 f}{\partial x dy} = \frac{\partial f}{\partial x}$ Let $s_n = 1 + \frac{(-1)^n}{n}$, $n \in \mathbb{N}$. Then the sequence $\{s_n\}$ is 7. (a) monotonically increasing and is convergent to 1 (b) monotonically decreasing and is convergent to 1 (c) neither monotonically increasing nor monotonically decreasing but is convergent to 1 (d) divergent 8. Consider the following group under matrix multiplication $H = \left\{ \begin{vmatrix} 1 & p & q \\ 0 & 1 & r \\ 0 & 0 & 1 \end{vmatrix} : p, qr \in \mathbb{R} \right\}$ Then the center of the group is isomorphic to (a) $(\mathbb{R} \setminus \{0\}, \times)$ (b) $(\mathbb{R}, +)$ (c) $(\mathbb{R}^2, +)$ (d) $(\mathbb{R}, +) \times (\mathbb{R} \setminus \{0\}, \times)$

9.	If the directional derivative of the function $z = y^2 e^{2x}$ at $(2, -1)$ along the unit vactor $\vec{b} = \alpha \hat{i} + \beta \hat{j}$ is zero,			
	then $ \alpha + \beta $ equals.			
	(a) $\frac{1}{2\sqrt{2}}$	(b) $\frac{1}{\sqrt{2}}$	(c) $\sqrt{2}$	(d) $2\sqrt{2}$
10.	If the equation of the tangent plane to the surface $z = 16 - x^2 - y^2$ at the point $P(1,3,6)$ is			
	ax + by + cz + d = 0. Then	the value of $ d $ is		
	(a) 16	(b) 26	(c) 36	(d) 46
11.	Let M be a 4×3 real matrix and let $\{e_1, e_2, e_3\}$ be the standard basis of \mathbb{R}^3 . which of the following is true?			
	(a) If rank $(M) = 1$, then $\{Me_1, Me_2\}$ is a linearly independent set			
	(b) If rank $(M) = 2$, then $\{Me_1, Me_2\}$ is a linearly independent set			
	(c) If rank $(M) = 2$, then $\{Me_1, Me_3\}$ is a linearly independent set			
	(d) If rank $(M) = 3$, then $\{Me_1, Me_3\}$ is a linearly independent set			
12.	Let $S^1 = \{z \in \mathbb{C} : z = 1\}$ be the circle group under multiplication and $i = \sqrt{-1}$. Then the set			
	$\left\{ \theta \in \mathbb{R} : \left\langle e^{i2\pi\theta} \right\rangle \text{ is infinite} \right\}$ is			
	(a) empty		(b) non-empty and	l finite
	(c) countably infinite	$\sqrt{1+\alpha^2}$	(d) uncountable	
13.	Define $s_1 = \alpha > 0$ and $s_{n+1} = \sqrt{\frac{1+s_n}{1+\alpha}}, n \ge 1$. Which of the following is true ?			
	(a) If $s^2 < \frac{1}{2}$, then $\{s_i\}$ is monotonically increasing and $\lim s_i = \frac{1}{2}$			
	(a) If $S_n < \alpha$, then $\{S_n\}$ is monotonically increasing and $n \to \infty^{-n} \sqrt{\alpha}$			
	(b) If $s_n^2 < \frac{1}{\alpha}$, then $\{s_n\}$ is monotonically decreasing and $\lim_{n \to \infty} s_n = \frac{1}{\alpha}$			
	(c) If $s_n^2 > \frac{1}{\alpha}$, then $\{s_n\}$ is monotonically increasing and $\lim_{n \to \infty} s_n = \frac{1}{\sqrt{\alpha}}$			
	(d) If $s_n^2 > \frac{1}{\alpha}$, then $\{s_n\}$ is monotonically decreasing and $\lim_{n \to \infty} s_n = \frac{1}{\alpha}$			
14.	Let M be a real 6×6 matrix. Let 2 and -1 be two eigenvalues of M. If $M^5 = aI + bM$, where $a, b \in \mathbb{R}$, then			
	(a) $a = 10, b = 11$	(b) $a = -11, b = 10$	(c) $a = -10, b = 11$	(d) $a = -10, b = -11$
15.	Let $f:[0,1] \to \mathbb{R}$ be a continuous function such that $f\left(\frac{1}{2}\right) = -\frac{1}{2}$ and			
	$ f(x) - f(y) - (x - y) \le \sin(x - y ^2)$ for all $x, y \in [0, 1]$. Then $\int_{0}^{1} f(x) dx$ is			
	(a) $-\frac{1}{2}$	(b) $-\frac{1}{4}$	(c) $\frac{1}{4}$	(d) $\frac{1}{2}$

- (c) $\frac{d^2 f}{dx^2}$ exists at x = 0 for exactly two values of a (d) $\frac{d^2 f}{dx^2}$ exists at x = 0 for infinitely many values of a

A solution of the differential equation $2x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} - y = 0, x > 0$ that passes through the point (1, 1) is 22. (b) $y = \frac{1}{r^2}$ (c) $y = \frac{1}{\sqrt{r}}$ (d) $y = \frac{1}{r^{3/2}}$ (a) $y = \frac{1}{2}$ Consider the differential equation $L[y] = (y - y^2)dx + xdy = 0$. The function f(x, y) is said to be an 23. integrating factor of the equation if f(x, y)L[y] = 0 becomes exact. If $f(x, y) = \frac{1}{r^2 y^2}$, then (a) f is an integrating factor and $y = 1 - kxy, k \in \mathbb{R}$ is NOT its general solution (b) f is an integrating factor and $y = -1 + kxy, k \in \mathbb{R}$ is its general solution (c) f is an integrating factor and $y = -1 + kxy, k \in \mathbb{R}$ is NOT its general solution (d) f is NOT an integrating factor and $y = 1 + kxy, k \in \mathbb{R}$ is its general solution 24. Let M be an $n \times n (n \ge 2)$ non-zero real matrix with $M^2 = 0$ and let $\alpha \in \mathbb{R} \setminus \{0\}$. Then (a) α is only eigenvalue of $(M + \alpha I)$ and $(M - \alpha I)$ (b) α is only eigenvalue of $(M + \alpha I)$ and $(\alpha I - M)$ (c) $-\alpha$ is the only eigenvalue of $(M + \alpha I)$ and $(M - \alpha I)$ (d) $-\alpha$ is only eigenvalue of $(M + \alpha I)$ and $(\alpha I - M)$ Let $\{a_n\}$ be a sequence of positive real numbers. Suppose that $l = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ which of the following is true ? 25. (b) If l = 1, then $\lim_{n \to \infty} a_n = 0$ (d) If l < 1, then $\lim_{n \to \infty} a_n = 0$ (a) If l = 1, then $\lim a_n = 1$ (c) If l < 1, then $\lim a_n = 1$ Let $D = \{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$ and $f : D \to \mathbb{R}$ be a non-constant continuous function. Which of the 26. following is TRUE? (a) The range of f is unbounded (a) The range of f is a union of open intervals
(b) The range of f is a union of open intervals (d) the range of f is a union of at least two disjoint closed intervals The area bounded by the curves $x^2 + y^2 = 2x$ and $x^2 + y^2 = 4x$, and the straight lines y = x and y = 0 is 27. (b) $3\left(\frac{\pi}{4} + \frac{1}{2}\right)$ (c) $2\left(\frac{\pi}{4} + \frac{1}{3}\right)$ (d) $2\left(\frac{\pi}{3} + \frac{1}{4}\right)$ (a) $3\left(\frac{\pi}{2} + \frac{1}{4}\right)$ 28. Let S be the surface of the portion of the sphere with centre at the origin and radius 4, above the xy-plane. Let $\vec{F} = y\hat{i} - x\hat{j} + yx^3\hat{k}$. if \hat{n} is the unit outward normal to S, Then $\iint (\nabla \times \vec{F}) \cdot \hat{n} dS$ equals (c) 16π (b) -16π (a) -32π (d) 32π The value of the triple integral $\iiint (x^2y+1) dx dy dz$, where V is the region given by $x^2 + y^2 \le 1, 0 \le z \le 2$ is 29. (b) 2π (c)3π (d) 4π (a) π Let S be the part of the cone $z^2 = x^2 + y^2$ between the planes z = 0 and z = 1. Then the value of the surface 30. integral $\iint (x^2 + y^2) dS$ is (b) $\frac{\pi}{\sqrt{2}}$ (c) $\frac{\pi}{\sqrt{3}}$ (d) $\frac{\pi}{2}$ (a) π

[Multiple Select Questions (MSQ)]

- Q.31 Q.40 carry TWO marks each.
- 31. Let $a = \lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{(n-1)}{n^2} \right)$ and $b = \lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{n+n} \right)$ which of the following is/are true?
 - (a) a > b (b) a < b (c) $ab = \ln \sqrt{2}$ (d) $\frac{a}{b} = \ln \sqrt{2}$

32. Let $L[y] = x^2 \frac{d^2 y}{dx^2} + px \frac{dy}{dx} + qy$, where p,q are real constants Let $y_1(x)$ and $y_2(x)$ be two solution of L[y] = 0, x > 0 that satisfy $y_1(x_0) = 1$, $y'_1(x_0) = 0$, $y_2(x_0) = 0$ and $y'_2(x_0) = 1$ for some $x_0 > 0$. Then, (a) $y_1(x)$ is not a constant multiple of $y_2(x)$

- (b) $y_1(x)$ is constant multiple of $y_2(x)$
- (c) 1, $\ln x$ are solutions of L[y] = 0 when p = 1, q = 0
- (d) x, ln x are solutions of L[y] = 0 when $p + q \neq 0$
- **33.** Cosider the following system of linear equations x + y + 5z = 3, x + 2y + mz = 5 and x + 2y + 4z = k. The system is consistent if
 - (a) $m \neq 4$ (b) $k \neq 5$ (c) m = 4 (d) k = 5
- **34.** Let $a, b \in \mathbb{R}$ and a < b. Which of the following statement(s) is/are true?
 - (a) There exists a continuous function $f:[a,b] \rightarrow (a,b)$ such that f is one-one
 - (b) There exists a continuous function $f:[a,b] \rightarrow (a,b)$ such that f is onto
 - (c) There exists a continuous function $f:(a,b) \rightarrow [a,b]$ such that f is one-one
 - (d) There exists a continuous function $f:(a,b) \rightarrow [a,b]$ such that f is onto
- **35.** Let $a, b, c \in \mathbb{R}$ such that a < b < c. Which of the following is/are true for any continuous function $f : \mathbb{R} \to \mathbb{R}$ satisfying f(a) = b, f(b) = c and f(c) = a?
 - (a) There exist $\alpha \in (a,c)$ such that $f(\alpha) = \alpha$
 - (b) There exist $\beta \in (a,b)$ such that $f(\beta) = \beta$
 - (c) There exists $\gamma \in (a, b)$ such that $(f \circ f)(\gamma) = \gamma$
 - (d) There exists $\delta \in (a,c)$ such that $(f \circ f \circ f)(\delta) = \delta$
- **36.** Let V be a non-zero vector space over a field F. Let $S \subset V$ be a non-empty set. Consider the following properties of S:
 - (I) For any vector space W over F, any map $f: S \to W$ extends to a linear map from V to W.
 - (II) For any vector space W over F and any two lienar maps $f, g: V \to W$ satisfying f(s) = g(s) for all
 - $s \in S$ we have f(v) = g(v) for all $v \in V$,
 - (III) S is linearly independent
 - (IV) The span of S is V
 - Which of the following statement (s) is/are True?
 - (a) (I) implies (IV) (b) (I) implies (III)
- (c) (II) implies (III) (d) (II) implies (IV)

37. If
$$s_n = \frac{(-1)^n}{2^n + 3}$$
 and $t_n = \frac{(-1)^n}{4n - 1}$, $n = 0, 1, 2, ...,$ then
(a) $\sum_{n=0}^{\infty} s_n$ is absolutely convergent (b) $\sum_{n=0}^{\infty} t_n$ is absolutely convergent
(c) $\sum_{n=0}^{\infty} s_n$ is conditionally convergent (d) $\sum_{n=0}^{\infty} t_n$ is conditionally convergent
38. Let *f* be a real valued function of a real variable, such that $\left| f^{(n)}(0) \right| \le K$ for all $n \in \mathbb{N}$, where K> 0. Which of the following is/are true ?
(a) $\left| \frac{f^{(n)}(0)}{n!} \right|^{\frac{1}{n}} \to 0$ as $n \to \infty$
(b) $\left| \frac{f^{(n)}(0)}{n!} \right|^{\frac{1}{n}} \to \infty$ as $n \to \infty$
(c) $f^{(n)}(x)$ exists for all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}$
(d) The series $\sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{(n-1)!}$ is absolutely convergent
39. Let G be a group with identity *e*. Let H be an abelian non-trivial proper subgroup of G with the property that $H \cap gHg^{-1} = \{e\}$ for all $g \notin H \cdot K = \{g \in G; gh = hg \forall h \in H\}$, then

- (a) K is a proper subgroup of H
- (b) H is a proper subgroup of K
- (c) K = H

- (c) K = H(d) There exists no abelian subgroup $L \subseteq G$ such that K is a proper subgroup of L
- Let S be that part of the surface of the paraboloid $z = 16 x^2 y^2$ which is above the plane z = 0 and D be 40. its projection on the xy- plane. Then the area of S equals

(a)
$$\iint_{D} \sqrt{1 + 4(x^{2} + y^{2})} dx dy$$

(b)
$$\iint_{D} \sqrt{1 + 2(x^{2} + y^{2})} dx dy$$

(c)
$$\int_{0}^{2\pi} \int_{0}^{4} \sqrt{1 + 4r^{2}} dr d\theta$$

(d)
$$\int_{0}^{2\pi} \int_{0}^{4} \sqrt{1 + 4r^{2}} r dr d\theta$$

SECTION-C

[Numerical Answer Type (NAT)]

Q.41 – Q.50 carry ONE mark each.

- 41. Let $\phi: S_3 \to S^1$ be a non-trivial non-injective group homomorphism. Then the number of elements in the kernel of ϕ is ______
- 42. Let $f : \mathbb{R} \to \mathbb{R}$ be such that f, f', f'' are continuous functions with f > 0, f' > 0 and f'' > 0. Then $\lim_{x \to \infty} \frac{f(x) + f'(x)}{2}$ is _____

43. Let
$$S = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$$
 and $f : S \to \mathbb{R}$ be defined by $f(x) = \frac{1}{x}$, then

 $\max\left\{\delta: \left|x - \frac{1}{3}\right| < \delta \Longrightarrow \left|f\left(x\right) - f\left(\frac{1}{3}\right)\right| < 1\right\} \text{ is } _____(upto two decimal places)$

44. Let f(x, y) = 0 be a solution of the homogeneous differential equation (2x+5y)dx - (x+3y)dy = 0If $f(x+\alpha, y-3) = 0$ is a solution of the differential equation (2x+5y-1)dx + (2-x-3y)dy = 0 then the value of α is ______

45. Consider the real vector space
$$P_{2020} = \left\{ \sum_{i=0}^{n} a_i x^i; a_i \in \mathbb{R} \text{ and } 0 \le n \le 2020 \right\}$$
. Let W be the subspace given by

$$W = \left\{ \sum_{i=0}^{n} a_i x^i \in P_{2020}; a_i = 0 \text{ for all odd } i \right\}, \text{ Then the dimension of W is } _$$

- 46. Let $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$ and S be the sphere given by $(x-2)^2 + (y-2)^2 + (z-2)^2 = 4$. If \hat{n} is the unit outward normal to S, then $\frac{1}{\pi} \iint_{S} \vec{F} \cdot \hat{n} dS$ is **RENDEAVOUR**
- 47. If $\int_{0}^{1} \int_{2y}^{2} e^{x^2} dx dy = k(e^4 1)$, then k equals_____
- **49.** Consider the differential equation $\frac{dy}{dx} + 10y = f(x), x > 0$. Where f(x) is a continuous function such that $\lim_{x \to \infty} f(x) = 1$. Then the value of $\lim_{x \to \infty} y(x)$ is ______
- 50. Let $f(x, y) = e^x \sin y, x = t^3 + 1$ and $y = t^4 + t$. Then $\frac{df}{dt}$ at t = 0 is _____ (upto two decimal places)

Q.51 - Q.60 carry TWO marks each.

51. Let $T : \mathbb{R}^7 \to \mathbb{R}^7$ be a linear transformation with nullity (T) = 2. Then, the minimum possible value for Rank (T²) is _____

52. Let
$$M = \begin{bmatrix} 9 & 2 & 7 & 1 \\ 0 & 7 & 2 & 1 \\ 0 & 0 & 11 & 6 \\ 0 & 0 & -5 & 0 \end{bmatrix}$$
. Then, the value of det((8I-M)³) is _____

- 53. Consider the expansion of the function $f(x) = \frac{3}{(1-x)(1+2x)}$ in powers of x, that is valid in $|x| < \frac{1}{2}$. Then the coefficient of x^4 is
- 54. Suppose that G is a group of order 57 which is NOT cyclic. If G contains a unique subgroup H of order 19, then for any $g \notin H, o(g)$ is _____
- 55. The minimum value of the function $f(x, y) = x^2 + xy + y^2 3x 6y + 11$ is_____
- 56. Let *C* be the boundary of the square with vertices (0, 0), (1, 0), (1, 1) and (0, 1) oriented in the counter clockwise sense. Then the value of the line integral $\oint_C x^2 y^2 dx + (x^2 y^2) dy$ is _____ (upto two decimal places)
- 57. Let $f(x) = \sqrt{x} + \alpha x, x > 0$ and $g(x) = a_0 + a_1(x-1) + a_2(x-1)^2$ be the sum of first three terms of the Taylor series of f(x) around x = 1. If g(3) = 3, then α is ______
- 58. If $x^2 + xy^2 = c$ where $c \in \mathbb{R}$, is the general solution of the exact differential equation M(x, y) dx + 2xy dy = 0 then M(1, 1) is
- 59. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function with f'(x) = f(x) for all x, Suppose that $f(\alpha x)$ and $f(\beta x)$ are

two non-zero solution of the differential equation $4\frac{d^2y}{dx^2} - p\frac{dy}{dx} + 3y = 0$ satisfying $f(\alpha x)f(\beta x) = f(2x)$

and $f(\alpha x)f(-\beta x) = f(x)$ then the value of p is _____

60. The sum of the series $\frac{1}{2(2^2-1)} + \frac{1}{3(3^2-1)} + \frac{1}{4(4^2-1)} + \dots$ is ______

**** END****