PAPER : IIT-JAM

MATHEMATICS MA-2021

SECTION-A

[Multiple Choice Questions (MCQ)]

Q. 1 - Q. 10 carry ONE mark each.

1. Let p and t the positive real numbers. Let D_{t} be the closed disc of radius t centered at $(0,0)$, i,.e. $D_{t}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq t^{2}\right\}$. Define
$I(p, t) t=\iint_{D_{t}} \frac{d x d y}{\left(p^{2}+x^{2}+y^{2}\right)^{p}}$ Then $\lim _{t \rightarrow \infty} I(p, t)$ is finite
(a) for no value of p
(b) onlyif $p<1$
(c) only if $\mathrm{p}=1$
(d) only if $p>1$
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that for all $x \in \mathbb{R}$.

$$
\begin{equation*}
\int_{0}^{1} f(x t) d x=0 \tag{*}
\end{equation*}
$$

then
(a) There is an f satisfying (*) that takes both positive and negative values.
(b) There is an f satisfying $\left(^{*}\right.$) that is 0 at infinitely many points, but is not identically zero.
(c) f must be identically 0 on the whole of \mathbb{R}
(d) There is an f satisfying $\left({ }^{*}\right)$ that is identically 0 on $(0,1)$ but not identically 0 on the whole of \mathbb{R}
3. For every $n \in \mathbb{N}$ let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a function. From the givenchoices pick the statement that is the negation of
"For every $x \in \mathbb{R}$ and for every real number $\in>0$, there exists an integer $N>0$ such that
$\sum_{i=1}^{p}\left|f_{N+i}(x)\right|<\in$ for every integer $\mathrm{p}>0$ ", NDEAVOUR
(a) For every $x \in \mathbb{R}$ and for every real number $\in>0$, there exists an integer $N>0$ such that $\sum_{i=1}^{p}\left|f_{N+i}(x)\right|<\in$ for every integer $\mathrm{p}>0$.
(b) For every $x \in \mathbb{R}$ and for every real number $\in>0$, there does not exist any integer $N>0$ such that $\sum_{i=1}^{p}\left|f_{N+i}(x)\right| \geq \in$ for every integer $\mathrm{p}>0$.
(c) There exists $x \in \mathbb{R}$ and there exists a real number $\in>0$ such that for every integer $\mathrm{N}>0$ and for every integer $\mathrm{p}>0$ the inequality $\sum_{i=1}^{p}\left|f_{N+i}(x)\right| \geq \in$ holds
(d) There exists $x \in \mathbb{R}$ and there exists a real number $\in>0$ such that for every integer $\mathrm{N}>0$ there exists an integer $p>0$ the inequality $\sum_{i=1}^{p}\left|f_{N+i}(x)\right| \geq \in$ holds.
4. How many elements of the group \mathbb{Z}_{50} have order 10 ?
(a) 8
(b) 10
(c) 5
(d) 4
5. Let $0<\alpha<1$ be a real numbner of differentiable functions $y:[0,1] \rightarrow[0, \infty)$, having continuous derivative on $[0,1]$ and satisfying

$$
\begin{aligned}
& y^{\prime}(t)=(y(t))^{\alpha}, t \in[0,1] \text { is } \\
& y(0)=0
\end{aligned}
$$

(a) inifinite
(b) exactly one
(b) exactly two
(d) finite but more thantwo.
6. Let $n>1$ be an integer, Consider the following two statements for an arbitrary $n \times n$ matrix A with complex entries.
I. If $A^{k}=I_{n}$ for some integer $k \geq 1$, then all the eigenvalues of A are $k^{\text {th }}$ roots of unity.
II. If for some integer $k \geq 1$, all the eigenvalue of A are $k^{\text {th }}$ roots of unity. then $A^{k}=I_{n}$.

Then
(a) I is True but II is False
(b) neither I nor II is True
(c) both I and II are True
(d) I si False but II is True
7. Which one of the following subsets of \mathbb{R} has a non- empty interior ?
(a) The set of all irrational number in \mathbb{R}.
(b) The set $\left\{b \in \mathbb{R}: x^{2}+b x+1=0\right.$ has distinct roots $\}$
(c) The set $\{a \in \mathbb{R}: \sin (a)=1\}$
(d) The set of all rational numbers in \mathbb{R}.
8. Let $P: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function that $P(x)>0$ for all $x \in \mathbb{R}$. Let y be a twice differentiable function on \mathbb{R} satisfying $y^{\prime \prime}(x)+P(x) y^{\prime}(x)-y(x)=0$ for all $x \in \mathbb{R}$. Suppose that there exist two real numbers $a, b(a<b)$ such that $y(a)=y(b)=0$. Then
(a) $y(x)$ changes sign on (a, b)
(b) $y(x)=0 \forall x \in[a, b]$
(c) $y(x)<0 \forall x \in(a, b)$
(d) $y(x)>0 \forall x \in(a, b)$
9. For an integer $k \geq 0$, let P_{k} denote the vector space of all real polynomials in one variable of degree less than or equal to k . Define a linear transformation $T: P_{2} \rightarrow P_{3}$ by $T f(x)=f^{\prime \prime}(x)+x f(x)$
Which one of the following polynomials is not inthe range of T?
(a) $x+x^{2}$
(b) $x^{2}+x^{3}+2$
(c) $x+1$
(d) $x+x^{3}+2$
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous function satisfying $f(x)=f(x+1) \forall x \in \mathbb{R}$. Then
(a) there exists infinitely many $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$
(b) theere is no $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$
(c) fis not necessarily bounded above.
(d) there exists a unique $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$

Q. 11 - Q. 30 carry TWO marks each.

11. Consider the following statements
I. The group $(\mathbb{Q},+)$ has no proper subgroup of finite index
II. The group $(\mathbb{C} \backslash\{0\}$,.) has no proper subgroup of finite index

Which one of the following statements is true?
(a) Neither I nor II is True
(b) Both I and II are True
(c) II is True but I is False
(d) I is True but II is False
12. Let $D \subseteq \mathbb{R}^{2}$ be defined by $D=\mathbb{R}^{2} \backslash\{(x, 0): x \in \mathbb{R}\}$. Consider the function $f: D \rightarrow \mathbb{R}$ defined by $f(x, y)=x \sin \frac{1}{y}$
Then
(a) f is a continuous function on D and cannot be extended continuously to any point outside D .
(b) f is discontinuous function on D .
(c) f is a continuous function on D and can be extended continuously to the whole of \mathbb{R}^{2}.
(d) f is a continuous function on D and can be extended continuously to $D \bigcup\{(0,0)\}$.
13. Consider the function
$f(x)=\left\{\begin{array}{cl}1 & \text { if } x \in(\mathbb{R} \backslash \mathbb{Q}) \cup\{0\} \\ 1-\frac{1}{p} & \text { if } x-\frac{n}{p}, n \in \mathbb{Z} \backslash\{0\}, p \in \mathbb{N} \text { and } \operatorname{gcd}(n, p)=1\end{array}\right.$
then
(a) f is continuous at all $x \in \mathbb{R} \backslash \mathbb{Q}$
(b) f is not continuous at $x=0$
(c) all $x \in \mathbb{Q} \backslash\{0\}$ are strict local minima for f.
(d) f is continuous at all $x \in \mathbb{Q}$
14. Let y be the solution of
$(1+x) y^{\prime \prime}(x)+y^{\prime}(x)-\frac{1}{1+x} y(x)=0, \in(-1, \infty)$
$y(0)=1, y^{\prime}(0)=0$
then
(a) y is bounded on $(-1,0$]
$] \quad A D C E D$
(b) $y(x) \geq 2$ on $(-1, \infty)$
(c) y attained its minimum at $x=0$
(d) y is bounded on $(0, \infty)$
15. Which one of the following statements is True ?
(a) Exactly half of the elements in any even order subgroup of S_{5} must be even permutations
(b) There exists and normal subgroup of S_{5} of index 7
(c) There exists a cyclic subgroup of S_{5} of order 6 .
(d) Any abelian subgroup of S_{5} is trivial
16. Which of the following statement is True?
(a) $(\mathbb{Q} / \mathbb{Z},+)$ is isomorphic to $(\mathbb{Q},+)$
(b) $(\mathbb{Q} / \mathbb{Z},+)$ is isomorphic to $(\mathbb{Q} / 2 \mathbb{Z},+)$
(c) $(\mathbb{Z},+)$ is isomorphic to $(\mathbb{Q},+)$
(d) $(\mathbb{Z},+)$ is isomorphic to $(\mathbb{R},+)$
17. Let $n \geq 2$ be an integer. Let $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be the linear transformation defined by $A\left(z_{1}, z_{2} \ldots . . z_{n}\right)=\left(z_{n}, z_{1}, z_{2} \ldots, . z_{n-1}\right)$ which one of the follwing statements is true for every $n \geq 2$?
(a) A is nilpotent
(b) All eigen value of A are of modulus 1
(c) A is singular
(d) Every eigenvalue of A is either 0 or 1 .
18. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function such that for all $a, b \in \mathbb{R}$ with $a<b$.

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}\left(\frac{a+b}{2}\right)
$$

Then
(a) f is not a polynomial
(b) f must be a linear polynomial
(c) f must be polynomial of degree less than or equal to 2 .
(d) f must be a polynomial of degree greater than 2 .
19. Let $M_{n}(\mathbb{R})$ be the real vector space of all $\mathrm{n} \times \mathrm{n}$ matrices with real entries $n \geq 2$

Let $A \in M_{n}(\mathbb{R})$. Consider the suspace W of $M_{n}(\mathbb{R})$ spanned by $\left\{I_{n}, A, A^{2}, \ldots.\right\}$. Then the dimension of W over \mathbb{R} is necessarily
(a) ∞
(b) at most n .
(c) n^{2}
(d) n
20. Consider the family of curves $x^{2}-y^{2}=k y$ with parameter $k \in \mathbb{R}$. The equation of the orthogonal trajectory to this family passing through $(1,1)$ is given by
(a) $x^{2}+2 x y=3$
(b) $x^{3}+3 x y^{2}=4$
(c) $x^{3}+2 x y^{2}=3$
(d) $y^{2}+2 x^{2} y=3$
21. Define $S=\lim _{n \rightarrow \infty}\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \ldots\left(1-\frac{1}{n^{2}}\right)$ Then
(a) $S=\frac{3}{4}$
(b) $S=1$
(c) $S=\frac{1}{2}$
(d) $S=\frac{1}{4}$
22. Consider the surface $S=\left\{(x, y, x y) \in \mathbb{R}^{3}: x^{2}+y^{2} \leq 1\right\}$. Let $\vec{F}=y \hat{i}+x \hat{j}+\hat{k}$ if \hat{n} is the continuous unit normal field to the surface S with postive z - component, then $\iint_{S} \vec{F} \cdot \hat{n} d S$ equals
(a) 2π
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{4}$
(d) π
23. Let $f:[0,1] \rightarrow[0,1]$ be a non- contant continuous function such that $f \circ f=f$. Define $E_{f}=\{x \in[0,1]: f(x)=x\}$. Then
(a) E_{f} is an interval
(b) E_{f} is empty
(c) E_{f} is neither open nor closed
(d) E_{f} need not be an interval
24. Let y be a twice differentiable function on \mathbb{R} satisfying
$y^{\prime \prime}(x)=2+e^{-|x|}, x \in \mathbb{R}$
$y(0)=-1, \quad y^{\prime}(0)=0$
Then
(a) There exists an $x_{0} \in \mathbb{R}$ such that $y\left(x_{0}\right) \geq y(x)$ for all $x \in \mathbb{R}$
(b) $y=0$ has exactly two roots
(c) $y=0$ has exactly one root
(d) $y=0$ has more than two roots
25. Let A be an $\mathrm{n} \times \mathrm{n}$ invertible matrix and C be an $\mathrm{n} \times \mathrm{n}$ nilpotent matrix. If $X=\left(\begin{array}{ll}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right)$ is a $2 \mathrm{n} \times 2 \mathrm{n}$ matrix (each $\mathrm{n} \times \mathrm{n}$) that commutes with the $2 \mathrm{n} \times 2 \mathrm{n}$ matrix $\mathrm{B}=\left(\begin{array}{cc}A & 0 \\ 0 & C\end{array}\right)$. then
(a) X_{12} and X_{22} are necessarily zero matrices
(b) X_{11} and X_{22} are necessarily zero matrices
(c) X_{12} and X_{21} are necessarily zero matrices
(d) X_{11} and X_{21} are necessarily zero matrices
26. Let g be an element of S_{7} such that g commutes with the element $(2,6,4,3)$. The number of such g is
(a) 48
(b) 6
(c) 4
(d) 24
27. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a bijective map such that $\sum_{n=1}^{\infty} \frac{f(n)}{n^{2}}<+\infty$. The number of such bijecitve maps is
(a) Zero
(b) infinite
(c) exactly one
(d) finite but more than one
28. Consider the two series
I. $\sum_{n=1}^{\infty} \frac{1}{n^{1+(1 / n)}}$ and II. $\sum_{n=1}^{\infty} \frac{1}{n^{2-n^{1 / n}}}$

Which one of the following holds ?
(a) Both I and II converge
(b) I diverges and II converges
(c) I converges and II diverges
(d) Both I and II diverge.
29. Let $f:[0,1] \rightarrow[0, \infty)$ be a continuous function such that $(f(t))^{2}<1+2 \int_{0}^{1} f(s) d s$, for all $t \in[0,1]$ Then
(a) $f(t)=1+t$ for all $t \in[0,1]$
(b) $f(t)<1+\frac{t}{2}$ for all $t \in[0,1]$
(c) $f(t)>1+t$ for all $t \in[0,1]$
(d) $f(t)<1+t$ for all $t \in[0,1]$
30. Let G be a finte abelian group of odd order. Consider the following two statements:
I. The map $f: G \rightarrow G$ define by $f(g)=g^{2}$ is a group isomorphism
II. The product $\prod_{g \in G} g=e$

(a) Both I and II are True
(b) Neither I nor II is True
(c) II is True but I is False
(d) I is Ture but II is False

SECTION-B

[Multiple Select Questions (MSQ)]

Q. 01 - Q. 10 carry TWO marks each.

1. Let G be a finite group of order 28 . Assume that G contain a subgroup of order 7 . Which of the following statements is/are True ?
(a) G contains atleast two subgroups of order 7
(b) G contains normal subgroups of order 7
(c) G contains a unique subgroups of order 7
(d) G contains no normal subgroups of order 7
2. Let $f:(a, b) \rightarrow \mathbb{R}$ be a differentiable function on (a, b). Which of the following statements is/are True?
(a) If $f^{\prime}\left(x_{0}\right)>0$ for some $x_{0} \in(a, b)$, then there exists a $\delta>0$ such that $f(x)>f\left(x_{0}\right)$ for all $x \in\left(x_{0}, x_{0}+\delta\right)$
(b) If $f^{\prime}\left(x_{0}\right)>0$ for some $x_{0} \in(a, b)$, then f is increasing in a neighbourhod of x_{0}.
(c) $f^{\prime}>0$ in (a, b) implies that f is increasing in (a, b)
(d) f is increasing in (a, b) implies that $f^{\prime}>0$ in (a, b)
3. Let V be a finite dimensional vector space and $T: V \rightarrow V$ be a linear transformation. Let $R(T)$ denote the range of T and $\mathrm{N}(\mathrm{T})$ denote the null space $\{v \in V: T v=0\}$ of T. If $\operatorname{rank}(\mathrm{T})=\operatorname{rank}\left(\mathrm{T}^{2}\right)$, then which of the following is/are necessarily true?
(a) $N(T)=\{0\}$
(b) $N(T)=N\left(T^{2}\right)$
(c) $N(T) \cap R(T)=\{0\}$
(d) $R(T)=R\left(T^{2}\right)$
4. Consider the four function from \mathbb{R} to $\mathbb{R}: f_{1}(x)=x^{4}+3 x^{3}+7 x+1, f_{2}(x)=x^{3}+3 x^{3}+4 x, f_{3}(x)=\arctan$
(x) and $f_{4}(x)= \begin{cases}x & \text { if } x \notin \mathbb{Z} \\ 0 & \text { if } x \in \mathbb{Z}\end{cases}$
Which of the following subsets of \mathbb{R} are open?
(a) The range of f_{4}
(b) The range of f_{2}
(c) The range of f_{1}
(d) The range of f_{3}
5. Which of the following subsets of R is/are connected ?
(a) The set $\left\{x \in \mathbb{R}: x^{3}+x+1 \geq 0\right\}$
(b) The set $\{x \in \mathbb{R}: x$ is irrational $\}$
(c) The set $\left\{x \in \mathbb{R}: x^{3}-2 x+1 \geq 0\right\}$
(d) The set $\left\{x \in \mathbb{R}: x^{3}-1 \geq 0\right\}$
6. Consider the two function $f(x, y)=x+y$ and $g(x, y)=x y-16$ defined on \mathbb{R}^{2}. Then
(a) The function g has a global extreme value at $(0,0$ subject to the condition $f=0$
(b) The function g has a global extreme value subject to the condition $f=0$
(c) The function f has no global extreme value subject to the condition $g=0$
(d) The function f attains global extreme value at $(4,4)$ and $(-4,-4)$ subject to the condition $g=0$
7. Let $D=\mathbb{R}^{2} \backslash\{(0,0)\}$, Consider the two functions $u, v: D \rightarrow \mathbb{R}$ defined by
$u(x, y)=x^{2}-y^{2}$ and $u(x, y)=x y$
Consider the gradients ∇u and ∇v of the functions u and v, respectively. Then
(a) ∇u and ∇v are perpendicular at each point (x, y) of D
(b) ∇u and ∇v are parallel at each point (x, y) of D
(c) ∇u and ∇v are each point (x, y) of D span \mathbb{R}^{2}
(d) ∇u and ∇v do not exist at somepoint (x, y) of D
8. Let $m>1$ and $n>1$ be integers. Let A be an $m \times n$ matrix such that for some $m \times 1$ matrix b_{1}, the equation $A x=b_{1}$ has infinitely many solutions. Let b_{2} denote an $m \times 1$ matrix different from b_{1}, then $A x=b_{2}$ has
(a) Finitely many solutions for some b_{2}.
(b) No solution for some b_{2}.
(c) infinitely many solutions for some b_{2}.
(d) A unique solution for some b_{2}.
9. Consider the equation $x^{2021}+x^{2020}+\ldots .+x-1=0$ Then
(a) exactly one real root is positive
(b) no real roots is positive
(c) all real roots are positive
(d) exactly one real root is negative
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a funtion with the property that for every $y \in \mathbb{R}$. The value of the expression $\sup _{x \in \mathbb{R}}[x y-f(x)]$ is finite. Define $g(y)=\sup _{x \in \mathbb{R}}[x y-f(x)]$ for $y \in \mathbb{R}$. Then
(a) f must satisfy $\lim _{|x| \rightarrow \infty} \frac{f(x)}{|x|}=+\infty$
(b) g is odd if f is even
(c) g is even if f is even
(d) f must satisfy $\lim _{|x| \rightarrow \infty} \frac{f(x)}{|x|}=-\infty$

SECTION-C

[Numerical Answer Type (NAT)]

Q. 01 - Q. 10 carry ONE mark each.

1. The number of group homomorphisms from the group \mathbb{Z}_{4} to the group S_{3} is \qquad
2. Consider the subset $S=\left\{(x, y): x^{2}+y^{2}>0\right\}$ of \mathbb{R}^{2}. Let
$P(x, y)=\frac{y}{x^{2}+y^{2}}$ and $Q(x, y)-\frac{x}{x^{2}+y^{2}}$
For $(x, y) \in S$.If C denotes the unit circle traversed in the counter-clockwise direction, then the value of $\frac{1}{\pi} \int_{C}(P d x+Q d y)$ is \qquad
3. Let $y:\left(\frac{9}{10}, 3\right) \rightarrow \mathbb{R}$ be a differentiable function satisfying

$$
(x-2 y) \frac{d y}{d x}+(2 x+y)=0, x \in\left(\frac{9}{10}, 3\right) \text {, and } y(1)=1 \text {. then } y(2) \text { equals }
$$

\qquad
4. Consider the set $A=\left\{a \in \mathbb{R}: x^{2}=a(a+1)(a+2)\right.$ has a real root $\}$. The number of connected components of A is \qquad .
5. The value of $\lim _{n \rightarrow \infty}\left(3^{n}+5^{n}+7^{n}\right)^{\frac{1}{n}}$ is \qquad .
6. Let $B=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 1\right\}$ and define $u(x, y, z)=\sin \left(\left(1-x^{2}-y^{2}-z^{2}\right)^{2}\right)$ for $(x, y, z) \in B$. Then the value of $\iint_{B}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial^{2} y}+\frac{\partial^{2} u}{\partial z^{2}}\right) d x d y d z$ is
7. The number of cycles of length 4 in S_{6} is \qquad
8. The value of $\frac{\pi}{2} \lim _{n \rightarrow \infty} \cos \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{8}\right) \ldots \cos \left(\frac{\pi}{2^{n+1}}\right)$ is \qquad
9. Let V be the real vector space of all continuous function $f:[0,2] \rightarrow \mathbb{R}$ such that the restriction of f to the interval $[0,1]$ is a polynomial of degree less than or equal to 2 , the restriction of f to the interval $[1,2]$ is a polynomial of degree less than or equal to 3 and $\mathrm{f}(0)=0$. Then the dimension of V is equal to \qquad
10. Let $\vec{F}=(y+1) e^{y} \cos (x) \hat{i}+(y+2) e^{y} \sin (x) \hat{j}$ be a vector field in \mathbb{R}^{2} and C be continuously differentiable path with the starting point $(0,1)$ and the end point $\left(\frac{\pi}{2}, 0\right)$. Then $\int_{C} \vec{F} \cdot d \vec{r}$ equals \qquad
Q. 11 - Q. 20 carry TWO marks each.
11. Consider those continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that have the property that given any $x \in \mathbb{R} . f(x) \in \mathbb{Q}$ if
$f(x+1) \in \mathbb{R} \backslash \mathbb{Q}$. The number of such functions is \qquad
12. The number of elements of order two in the group S_{4} is equal to \qquad
13. Let $A=\left(\begin{array}{ccc}2 & -1 & 3 \\ 2 & -1 & 3 \\ 3 & 2 & -1\end{array}\right)$. Then the largest eigenvalue of A is \qquad
14. The least possible value of k, accurate up to two decimal place, for which the following problem
$y^{\prime \prime}(t)+2 y^{\prime}(t)+k y(t)=0, t \in \mathbb{R}$
$y(0)=0, y(1)=0, y(1 / 2)=1$ has a solution is \qquad
15. Let $A=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$. Consider the linear map T_{A} from the real vector space $\mathrm{M}_{4}(\mathbb{R})$ to itself defined by $T_{A}(X)=A X-X A$, for all $X \in M_{4}(\mathbb{R})$. The dimension of the range of T_{A} is \qquad -
16. The determinant of the matrix
$\left(\begin{array}{llll}2021 & 2020 & 2020 & 2020 \\ 2021 & 2021 & 2020 & 2020 \\ 2021 & 2021 & 2021 & 2020 \\ 2021 & 2021 & 2021 & 2021\end{array}\right)$ is \square
17. The largest positive number a such that $\int_{0}^{5} f(x) d x+\int_{0}^{3} f^{-1}(x) d x \geq a$ for every strictly increasing surjective continuous function $f:[0, \infty) \rightarrow[0, \infty)$ is \qquad
18. Define the sequence $S_{n}=$
$=\left\{\begin{array}{l}\frac{1}{2^{n}} \sum_{j=0}^{n-2} 2^{2 j} \text { if } n>0 \text { is even } A V O R \\ \frac{1}{2^{n}} \sum_{j=0}^{n-1} 2^{2 j} \quad \text { if } n>0 \text { is odd }\end{array}\right.$
Define $\sigma_{m}=\frac{1}{m} \sum_{n=1}^{m} s_{n}$. The number of limit points of the sequence $\left\{\sigma_{m}\right\}$ is \qquad
19. Let S be the surface defined by $\left\{(x, y, z) \in \mathbb{R}^{3}: z=1-x^{2}-y^{2}, z \geq 0\right\}$. Let $\vec{F}=-y \hat{i}+(x-1) \hat{j}+z^{2} \hat{k}$ and \hat{n} be the continuous unit normal field to the surface S with positive z -component. Then the value of $\frac{1}{\pi} \iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d S$ is \qquad
20. The value of $\lim _{n \rightarrow \infty} \int_{0}^{1} e^{e^{2}} \sin (n x) d x$ is \qquad

