#### **MATHEMATICS MA-2021**

#### **SECTION-A**

## [Multiple Choice Questions (MCQ)]

### Q.1 - Q.10 carry ONE mark each.

| 1. | Let p and t the positive real numbers. Let $D_t$ be the closed disc of radius t centered at $(0, 0)$ , i,.e |
|----|-------------------------------------------------------------------------------------------------------------|
|    | $D_t = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le t^2\}$ . Define                                            |

$$I(p,t)t = \iint_{D_t} \frac{dxdy}{\left(p^2 + x^2 + y^2\right)^p} \text{ Then } \lim_{t \to \infty} I(p,t) \text{ is finite}$$

- (a) for no value of p
- (b) only if p < 1
- (c) only if p = 1
- (d) only if p > 1
- 2. Let  $f: \mathbb{R} \to \mathbb{R}$  be a continuous function such that for all  $x \in \mathbb{R}$ .

$$\int_{0}^{1} f(xt) dx = 0 \tag{*}$$

then

- (a) There is an f satisfying (\*) that takes both positive and negative values.
- (b) There is an f satisfying (\*) that is 0 at infinitely many points, but is not identically zero.
- (c) f must be identically 0 on the whole of  $\mathbb{R}$
- (d) There is an f satisfying (\*) that is identically 0 on (0, 1) but not identically 0 on the whole of  $\mathbb{R}$
- For every  $n \in \mathbb{N}$  let  $f_n : \mathbb{R} \to \mathbb{R}$  be a function. From the given choices pick the statement that is the negation of "For every  $x \in \mathbb{R}$  and for every real number  $\in > 0$ , there exists an integer N > 0 such that  $\sum_{i=1}^p |f_{N+i}(x)| < \in \text{ for every integer p} > 0$ ".
  - (a) For every  $x \in \mathbb{R}$  and for every real number  $\epsilon > 0$ , there exists an integer N > 0 such that  $\sum_{i=1}^{p} |f_{N+i}(x)| < \epsilon \text{ for every integer } p > 0.$
  - (b) For every  $x \in \mathbb{R}$  and for every real number  $\in > 0$ , there does not exist any integer N > 0 such that  $\sum_{i=1}^{p} |f_{N+i}(x)| \ge \in$  for every integer p > 0.
  - (c) There exists  $x \in \mathbb{R}$  and there exists a real number  $\in > 0$  such that for every integer N > 0 and for every integer p > 0 the inequality  $\sum_{i=1}^{p} |f_{N+i}(x)| \ge \in$  holds
  - (d) There exists  $x \in \mathbb{R}$  and there exists a real number  $\in > 0$  such that for every integer N > 0 there exists an integer p > 0 the inequality  $\sum_{i=1}^{p} |f_{N+i}(x)| \ge \in$  holds.
- **4.** How many elements of the group  $\mathbb{Z}_{50}$  have order 10?
  - (a) 8

- (b) 10
- (c) 5
- (d) 4



| 5. | Let $0 < \alpha < 1$ be a real number of differentiable functions $y : [0,1] \to [0,\infty)$ , having continuous derivative |
|----|-----------------------------------------------------------------------------------------------------------------------------|
|    | on [0, 1] and satisfying                                                                                                    |

$$y'(t) = (y(t))^{\alpha}, t \in [0,1]$$
  
 $y(0) = 0$  is

- (a) inifinite
- (b) exactly one
- (b) exactly two
- (d) finite but more than two.
- **6.** Let n > 1 be an integer, Consider the following two statements for an arbitrary  $n \times n$  matrix A with complex entries.
  - I. If  $A^k = I_n$  for some integer  $k \ge 1$ , then all the eigenvalues of A are  $k^{th}$  roots of unity.
  - II. If for some integer  $k \ge 1$ , all the eigenvalue of A are  $k^{th}$  roots of unity. then  $A^k = I_n$ . Then
  - (a) I is True but II is False

(b) neither I nor II is True

(c) both I and II are True

- (d) I si False but II is True
- 7. Which one of the following subsets of  $\mathbb{R}$  has a non-empty interior?
  - (a) The set of all irrational number in  $\mathbb{R}$ .
  - (b) The set  $\{b \in \mathbb{R} : x^2 + bx + 1 = 0 \text{ has distinct roots}\}$
  - (c) The set  $\{a \in \mathbb{R} : \sin(a) = 1\}$
  - (d) The set of all rational numbers in  $\mathbb{R}$ .
- 8. Let  $P: \mathbb{R} \to \mathbb{R}$  be a continuous function that P(x) > 0 for all  $x \in \mathbb{R}$ . Let y be a twice differentiable function on  $\mathbb{R}$  satisfying y''(x) + P(x)y'(x) y(x) = 0 for all  $x \in \mathbb{R}$ . Suppose that there exist two real numbers a, b(a < b) such that y(a) = y(b) = 0. Then
  - (a) y(x) changes sign on (a, b)

(b)  $y(x) = 0 \ \forall x \in [a,b]$ 

(c)  $y(x) < 0 \ \forall x \in (a,b)$ 

- (d)  $y(x) > 0 \ \forall x \in (a,b)$
- 9. For an integer  $k \ge 0$ , let  $P_k$  denote the vector space of all real polynomials in one variable of degree less than or equal to k. Define a linear transformation  $T: P_2 \to P_3$  by Tf(x) = f''(x) + xf(x) Which one of the following polynomials is not in the range of T?

(a)  $x + x^2$ 

- (b)  $x^2 + x^3 + 2$
- (c) x + 1
- (d)  $x + x^3 + 2$
- 10. Let  $f: \mathbb{R} \to \mathbb{R}$  be continuous function satisfying  $f(x) = f(x+1) \, \forall x \in \mathbb{R}$ . Then
  - (a) there exists infinitely many  $x_0 \in \mathbb{R}$  such that  $f(x_0 + \pi) = f(x_0)$
  - (b) theere is no  $x_0 \in \mathbb{R}$  such that  $f(x_0 + \pi) = f(x_0)$
  - (c) f is not necessarily bounded above.
  - (d) there exists a unique  $x_0 \in \mathbb{R}$  such that  $f(x_0 + \pi) = f(x_0)$

#### Q.11 - Q.30 carry TWO marks each.

- 11. Consider the following statements
  - I. The group  $(\mathbb{Q},+)$  has no proper subgroup of finite index
  - II. The group  $(\mathbb{C}\setminus\{0\},.)$  has no proper subgroup of finite index

Which one of the following statements is true?

(a) Neither I nor II is True

(b) Both I and II are True

(c) II is True but I is False

(d) I is True but II is False



12. Let  $D \subseteq \mathbb{R}^2$  be defined by  $D = \mathbb{R}^2 \setminus \{(x,0) : x \in \mathbb{R}\}$ . Consider the function  $f: D \to \mathbb{R}$  defined by

$$f(x,y) = x \sin \frac{1}{y}$$

Then

- (a) f is a continuous function on D and cannot be extended continuously to any point outside D.
- (b) *f* is discontinuous function on D.
- (c) f is a continuous function on D and can be extended continuously to the whole of  $\mathbb{R}^2$ .
- (d) f is a continuous function on D and can be extended continuously to  $D \cup \{(0,0)\}$ .
- **13.** Consider the function

$$f(x) = \begin{cases} 1 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cup \{0\} \\ 1 - \frac{1}{p} & \text{if } x - \frac{n}{p}, n \in \mathbb{Z} \setminus \{0\}, p \in \mathbb{N} \text{ and } \gcd(n, p) = 1 \end{cases}$$

then

- (a) f is continuous at all  $x \in \mathbb{R} \setminus \mathbb{Q}$
- (b) f is not continuous at x = 0
- (c) all  $x \in \mathbb{Q} \setminus \{0\}$  are strict local minima for f.
- (d) f is continuous at all  $x \in \mathbb{Q}$
- 14. Let y be the solution of

$$(1+x)y''(x)+y'(x)-\frac{1}{1+x}y(x)=0, \in (-1,\infty)$$

$$y(0) = 1, y'(0) = 0$$

then

- (a) y is bounded on (-1,0] CARCER END (b)  $y(x) \ge 2$  on  $(-1,\infty)$
- (c) y attained its minimum at x = 0

- (d) y is bounded on  $(0, \infty)$
- **15.** Which one of the following statements is True?
  - (a) Exactly half of the elements in any even order subgroup of  $S_5$  must be even permutations
  - (b) There exists and normal subgroup of S<sub>s</sub> of index 7
  - (c) There exists a cyclic subgroup of S<sub>5</sub> of order 6.
  - (d) Any abelian subgroup of S<sub>5</sub> is trivial
- **16.** Which of the following statement is True?
  - (a)  $(\mathbb{Q}/\mathbb{Z},+)$  is isomorphic to  $(\mathbb{Q},+)$
- (b)  $(\mathbb{Q}/\mathbb{Z},+)$  is isomorphic to  $(\mathbb{Q}/2\mathbb{Z},+)$

(c)  $(\mathbb{Z},+)$  is isomorphic to  $(\mathbb{Q},+)$ 

- (d)  $(\mathbb{Z},+)$  is isomorphic to  $(\mathbb{R},+)$
- 17. Let  $n \ge 2$  be an integer. Let  $A: \mathbb{C}^n \to \mathbb{C}^n$  be the linear transformation defined by

 $A(z_1, z_2, ..., z_n) = (z_n, z_1, z_2, ..., z_{n-1})$  which one of the following statements is true for every  $n \ge 2$ ?

(a) A is nilpotent

(b) All eigen value of A are of modulus 1

(c) A is singular

(d) Every eigenvalue of A is either 0 or 1.



Let  $f : \mathbb{R} \to \mathbb{R}$  be an infinitely differentiable function such that for all  $a, b \in \mathbb{R}$  with a < b.

$$\frac{f(b)-f(a)}{b-a} = f'\left(\frac{a+b}{2}\right)$$

Then

- (a) f is not a polynomial
- (b) f must be a linear polynomial
- (c) f must be polynomial of degree less than or equal to 2.
- (d) f must be a polynomial of degree greater than 2.
- Let  $M_n(\mathbb{R})$  be the real vector space of all n×n matrices with real entries  $n \ge 2$ 19.

Let  $A \in M_n(\mathbb{R})$ . Consider the suspace W of  $M_n(\mathbb{R})$  spanned by  $\{I_n, A, A^2, ....\}$ . Then the dimension of W over  $\mathbb{R}$  is necessarily

(a)  $\infty$ 

- (b) at most n.
- (c)  $n^2$
- (d) n
- Consider the family of curves  $x^2 y^2 = ky$  with parameter  $k \in \mathbb{R}$ . The equation of the orthogonal trajectory 20. to this family passing through (1, 1) is given by
  - (a)  $x^2 + 2xy = 3$
- (b)  $x^3 + 3xy^2 = 4$  (c)  $x^3 + 2xy^2 = 3$  (d)  $y^2 + 2x^2y = 3$

- Define  $S = \lim_{n \to \infty} \left( 1 \frac{1}{2^2} \right) \left( 1 \frac{1}{3^2} \right) ... \left( 1 \frac{1}{n^2} \right)$  Then 21.
  - (a)  $S = \frac{3}{4}$
- (b) S = 1 (c)  $S = \frac{1}{2}$  (d)  $S = \frac{1}{4}$
- Consider the surface  $S = \{(x, y, xy) \in \mathbb{R}^3 : x^2 + y^2 \le 1\}$ . Let  $\vec{F} = y\hat{i} + x\hat{j} + \hat{k}$  if  $\hat{n}$  is the continuous unit normal 22. field to the surface S with postive z-component, then  $\iint \vec{F} \cdot \hat{n} dS$  equals

- (a)  $2\pi$  (b)  $\frac{\pi}{2}$  (c)  $\frac{\pi}{4}$  (d)  $\pi$ Let  $f:[0,1] \to [0,1]$  be a non-contant continuous function such that  $f \circ f = f$ . Define 23.

$$E_f = \{x \in [0,1]: f(x) = x\}$$
. Then

(a)  $E_f$  is an interval

(b)  $E_f$  is empty

(c)  $\vec{E}_{f}$  is neither open nor closed

- (d)  $\vec{E_f}$  need not be an interval
- 24. Let y be a twice differentiable function on  $\mathbb{R}$  satisfying

$$y''(x) = 2 + e^{-|x|}, x \in \mathbb{R}$$
  
 $y(0) = -1, y'(0) = 0$ 

Then

- (a) There exists an  $x_0 \in \mathbb{R}$  such that  $y(x_0) \ge y(x)$  for all  $x \in \mathbb{R}$
- (b) y = 0 has exactly two roots
- (c) y = 0 has exactly one root
- (d) y = 0 has more than two roots



Let A be an n×n invertible matrix and C be an n×n nilpotent matrix. If  $X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$  is a 2n×2n matrix 25.

(each n×n) that commutes with the 2n×2n matrix B =  $\begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix}$ . then

- (a)  $X_{12}$  and  $X_{22}$  are necessarily zero matrices
- (b)  $X_{11}$  and  $X_{22}$  are necessarily zero matrices
- (c)  $X_{12}$  and  $X_{21}$  are necessarily zero matrices
- (d)  $X_{11}$  and  $X_{22}$  are necessarily zero matrices
- **26.** Let g be an element of  $S_7$  such that g commutes with the element (2, 6, 4, 3). The number of such g is

(b) 6

- Let  $f: \mathbb{N} \to \mathbb{N}$  be a bijective map such that  $\sum_{n=1}^{\infty} \frac{f(n)}{n^2} < +\infty$ . The number of such bijective maps is 27.
  - (a) Zero

(b) infinite

(c) exactly one

(d) finite but more than one

28. Consider the two series

I. 
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+(1/n)}}$$
 and II.  $\sum_{n=1}^{\infty} \frac{1}{n^{2-n^{1/n}}}$ 

Which one of the following holds?

(a) Both I and II converge

(b) I diverges and II converges

(c) I converges and II diverges

- (d) Both I and II diverge.
- Let  $f:[0,1] \to [0,\infty)$  be a continuous function such that  $(f(t))^2 < 1 + 2\int f(s)ds$ , for all  $t \in [0,1]$  Then **29.** 
  - (a) f(t) = 1 + t for all  $t \in [0,1]$

(b)  $f(t) < 1 + \frac{t}{2}$  for all  $t \in [0,1]$ 

(c) f(t) > 1 + t for all  $t \in [0,1]$ 

- (d) f(t) < 1 + t for all  $t \in [0,1]$
- Let G be a finte abelian group of odd order. Consider the following two statements: 30.
  - The map  $f: G \to G$  define by  $f(g) = g^2$  is a group isomorphism
  - The product  $\prod_{g \in G} g = e$
  - (a) Both I and II are True

(b) Neither I nor II is True

(c) II is True but I is False

(d) I is Ture but II is False

#### **SECTION-B**

#### [Multiple Select Questions (MSQ)]

# Q.01 - Q.10 carry TWO marks each.

- Let G be a finite group of order 28. Assume that G contain a subgroup of order 7. Which of the following 1. statements is/are True?
  - (a) G contains at least two subgroups of order 7
- (b) G contains normal subgroups of order 7
- (c) G contains a unique subgroups of order 7
- (d) G contains no normal subgroups of order 7
- Let  $f:(a,b)\to\mathbb{R}$  be a differentiable function on (a,b). Which of the following statements is/are True? 2.
  - (a) If  $f'(x_0) > 0$  for some  $x_0 \in (a,b)$ , then there exists a  $\delta > 0$  such that  $f(x) > f(x_0)$  for all  $x \in (x_0, x_0 + \delta)$
  - (b) If  $f'(x_0) > 0$  for some  $x_0 \in (a,b)$ , then f is increasing in a neighbourhod of  $x_0$ .
  - (c) f' > 0 in (a, b) implies that f is increasing in (a, b)
  - (d) f is increasing in (a,b) implies that f' > 0 in (a, b)



- 3. Let V be a finite dimensional vector space and  $T:V\to V$  be a linear transformation. Let R(T) denote the range of T and N(T) denote the null space  $\{v \in V : Tv = 0\}$  of T. If rank (T) = rank (T<sup>2</sup>), then which of the following is/are necessarily true?
  - (a)  $N(T) = \{0\}$
- (b)  $N(T) = N(T^2)$  (c)  $N(T) \cap R(T) = \{0\}$  (d)  $R(T) = R(T^2)$
- Consider the four function from  $\mathbb{R}$  to  $\mathbb{R}$ :  $f_1(x) = x^4 + 3x^3 + 7x + 1$ ,  $f_2(x) = x^3 + 3x^3 + 4x$ ,  $f_3(x) = \arctan$ 4. (x) and  $f_4(x) = \begin{cases} x & \text{if } x \notin \mathbb{Z} \\ 0 & \text{if } x \in \mathbb{Z} \end{cases}$

Which of the following subsets of Rare open?

- (a) The range of  $f_{\perp}$
- (b) The range of  $f_{s}$
- (c) The range of  $f_1$  (d) The range of  $f_3$
- Which of the following subsets of R is/are connected? 5.
  - (a) The set  $\{x \in \mathbb{R} : x^3 + x + 1 \ge 0\}$

- (b) The set  $\{x \in \mathbb{R} : x \text{ is irrational}\}$
- (c) The set  $\{x \in \mathbb{R} : x^3 2x + 1 \ge 0\}$
- (d) The set  $\{x \in \mathbb{R} : x^3 1 \ge 0\}$
- Consider the two function f(x, y) = x + y and g(x, y) = xy 16 defined on  $\mathbb{R}^2$ . Then 6.
  - (a) The function g has a global extreme value at (0, 0) subject to the condition f = 0
  - (b) The function g has a global extreme value subject to the condition f = 0
  - (c) The function f has no global extreme value subject to the condition g = 0
  - (d) The function f attains global extreme value at (4, 4) and (-4, -4) subject to the condition g = 0
- Let  $D = \mathbb{R}^2 \setminus \{(0,0)\}$ , Consider the two functions  $u, v : D \to \mathbb{R}$  defined by 7.

$$u(x, y) = x^2 - y^2$$
 and  $u(x, y) = xy$ 

Consider the gradients  $\nabla u$  and  $\nabla v$  of the functions u and v, respectively. Then

- (a)  $\nabla u$  and  $\nabla v$  are perpendicular at each point (x, y) of D
- (b)  $\nabla u$  and  $\nabla v$  are parallel at each point (x, y) of D
- (c)  $\nabla u$  and  $\nabla v$  are each point (x, y) of D span  $\mathbb{R}^2$
- (d)  $\nabla u$  and  $\nabla v$  do not exist at some point (x, v) of D
- Let m > 1 and n > 1 be integers. Let A be an  $m \times n$  matrix such that for some  $m \times 1$  matrix  $b_1$ , the equation 8.  $Ax = b_1$  has infinitely many solutions. Let  $b_2$  denote an  $m \times 1$  matrix different from  $b_1$ , then  $Ax = b_2$  has
  - (a) Finitely many solutions for some b<sub>2</sub>.
- (b) No solution for some  $b_2$ .
- (c) infinitely many solutions for some  $b_2$ .
- (d) A unique solution for some  $b_2$ .
- Consider the equation  $x^{2021} + x^{2020} + .... + x 1 = 0$  Then 9.
  - (a) exactly one real root is positive

(b) no real roots is positive

(c) all real roots are positive

- (d) exactly one real root is negative
- Let  $f: \mathbb{R} \to \mathbb{R}$  be a funtion with the property that for every  $y \in \mathbb{R}$ . The value of the expression 10.  $\sup_{x\in\mathbb{R}} \Big[ xy - f\left(x\right) \Big] \text{ is finite. Define } g\left(y\right) = \sup_{x\in\mathbb{R}} \Big[ xy - f\left(x\right) \Big] \text{ for } y\in\mathbb{R} \text{ . Then }$ 
  - (a) f must satisfy  $\lim_{|x| \to \infty} \frac{f(x)}{|x|} = +\infty$

(b) g is odd if f is even

(c) g is even if f is even

(d) f must satisfy  $\lim_{|x| \to \infty} \frac{f(x)}{|x|} = -\infty$ 



#### **SECTION-C**

## [Numerical Answer Type (NAT)]

### Q.01 - Q.10 carry ONE mark each.

- 1. The number of group homomorphisms from the group  $\mathbb{Z}_4$  to the group S<sub>3</sub> is \_\_\_\_\_
- 2. Consider the subset  $S = \{(x, y) : x^2 + y^2 > 0\}$  of  $\mathbb{R}^2$ . Let

$$P(x,y) = \frac{y}{x^2 + y^2}$$
 and  $Q(x,y) - \frac{x}{x^2 + y^2}$ 

For  $(x, y) \in S$ . If C denotes the unit circle traversed in the counter-clockwise direction, then the value of

$$\frac{1}{\pi} \int_{C} (Pdx + Qdy)$$
 is \_\_\_\_\_

3. Let  $y: \left(\frac{9}{10}, 3\right) \to \mathbb{R}$  be a differentiable function satisfying

$$(x-2y)\frac{dy}{dx} + (2x+y) = 0, x \in \left(\frac{9}{10}, 3\right), \text{ and } y(1) = 1 \text{ . then } y(2) \text{ equals}$$

- 4. Consider the set  $A = \{a \in \mathbb{R} : x^2 = a(a+1)(a+2) \text{ has a real root} \}$ . The number of connected components of A is \_\_\_\_\_.
- 5. The value of  $\lim_{n \to \infty} (3^n + 5^n + 7^n)^{\frac{1}{n}}$  is \_\_\_\_\_.
- 6. Let  $B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}$  and define  $u(x, y, z) = \sin((1 x^2 y^2 z^2)^2)$  for  $(x, y, z) \in B$ . Then the value of  $\iint_B \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial z^2}\right) dx dy dz$  is \_\_\_\_\_\_
- 7. The number of cycles of length 4 in  $S_6$  is \_\_\_
- 8. The value of  $\frac{\pi}{2} \lim_{n \to \infty} \cos\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{8}\right) .... \cos\left(\frac{\pi}{2^{n+1}}\right)$  is \_\_\_\_\_
- 9. Let V be the real vector space of all continuous function  $f:[0,2] \to \mathbb{R}$  such that the restriction of f to the interval [0, 1] is a polynomial of degree less than or equal to 2, the restriction of f to the interval [1, 2] is a polynomial of degree less than or equal to 3 and f(0)=0. Then the dimension of V is equal to \_\_\_\_\_
- 10. Let  $\vec{F} = (y+1)e^y \cos(x)\hat{i} + (y+2)e^y \sin(x)\hat{j}$  be a vector field in  $\mathbb{R}^2$  and C be continuously diffferentiable path with the starting point (0,1) and the end point  $(\frac{\pi}{2},0)$ . Then  $\int_{-\vec{r}}^{\vec{r}} \vec{r} \cdot d\vec{r}$  equals \_\_\_\_\_\_

## Q.11 - Q.20 carry TWO marks each.

11. Consider those continuous functions  $f : \mathbb{R} \to \mathbb{R}$  that have the property that given any  $x \in \mathbb{R}$ .  $f(x) \in \mathbb{Q}$  if

$$f(x+1) \in \mathbb{R} \setminus \mathbb{Q}$$
. The number of such functions is \_\_\_\_\_



- 12. The number of elements of order two in the group  $S_4$  is equal to \_\_\_\_\_
- 13. Let  $A = \begin{pmatrix} 2 & -1 & 3 \\ 2 & -1 & 3 \\ 3 & 2 & -1 \end{pmatrix}$ . Then the largest eigenvalue of A is \_\_\_\_\_\_
- 14. The least possible value of k, accurate up to two decimal place, for which the following problem  $y''(t) + 2y'(t) + ky(t) = 0, t \in \mathbb{R}$  y(0) = 0, y(1) = 0, y(1/2) = 1 has a solution is \_\_\_\_\_\_
- 15. Let  $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$ . Consider the linear map  $T_A$  from the real vector space  $\mathbf{M}_4(\mathbb{R})$  to itself defined

by  $T_A(X) = AX - XA$ , for all  $X \in M_4(\mathbb{R})$ . The dimension of the range of  $T_A$  is \_\_\_\_\_

- 16. The determinant of the matrix  $\begin{pmatrix}
  2021 & 2020 & 2020 & 2020 \\
  2021 & 2021 & 2020 & 2020 \\
  2021 & 2021 & 2021 & 2020 \\
  2021 & 2021 & 2021 & 2021
  \end{pmatrix}$  is \_\_\_\_\_\_
- 17. The largest positive number a such that  $\int_{0}^{5} f(x) dx + \int_{0}^{3} f^{-1}(x) dx \ge a$  for every strictly increasing surjective continuous function  $f:[0,\infty) \to [0,\infty)$  is \_\_\_\_\_
- 18. Define the sequence  $S_n = \begin{cases} \frac{1}{2^n} \sum_{j=0}^{n-2} 2^{2j} & \text{if } n > 0 \text{ is even} \\ \frac{1}{2^n} \sum_{j=0}^{n-1} 2^{2j} & \text{if } n > 0 \text{ is odd} \end{cases}$

Define  $\sigma_m = \frac{1}{m} \sum_{n=1}^m s_n$ . The number of limit points of the sequence  $\{\sigma_m\}$  is \_\_\_\_\_\_

- 19. Let S be the surface defined by  $\{(x,y,z) \in \mathbb{R}^3 : z = 1 x^2 y^2, z \ge 0\}$ . Let  $\vec{F} = -y\hat{i} + (x-1)\hat{j} + z^2\hat{k}$  and  $\hat{n}$  be the continuous unit normal field to the surface S with positive z-component. Then the value of  $\frac{1}{\pi} \iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} dS$  is \_\_\_\_\_\_
- 20. The value of  $\lim_{n\to\infty} \int_0^1 e^{x^2} \sin(nx) dx$  is \_\_\_\_\_

\*\*\*\* END\*\*\*\*