PAPER : IIT-JAM

MATHEMATICS MA-2022

SECTION-A

[Multiple Choice Questions (MCQ)]

Q. 1 - Q. 10 carry ONE mark each.

1. Consider the 2×2 matrix $M=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right) \in M_{2}(\mathbb{R})$. If the eighth power of M satisfies $M^{8}\binom{1}{0}=\binom{x}{y}$, then the value of x is
(a) 21
(b) 22
(c) 34
(d) 35
2. The rank of the 4×6 matrix $\left(\begin{array}{cccccc}1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1\end{array}\right)$ with entries in \mathbb{R} is
(a) 1
(b) 2
(c) 3
(d) 4
3. Let V be the real vector space consisting of all polynomials in one variable with real coefficients and having degree at most 6 , together with the zero polynomial. Then which one of the following is true?
(a) $\{f \in V:(1 / 2) \notin \mathbb{Q}\}$ is a subspace of V
(b) $\{f \in V:(1 / 2)=1\}$ is a subspace of V
(c) $\{f \in V:(1 / 2)=f(1)\}$ is a subspace of V
(d) $\left\{f \in V: f^{\prime}(1 / 2)=1\right\}$ is a subspace of V
4. Let G be a group of order 2022. Let H and K be subgroups of G of order 337 and 674 , respectively. If $H \cup K$ is also a subgroup of G, then which one of the following is False?
(a) H is normal subgroup of $H \cup K$
(b) The order of $H \cup K$ ios 1011.
(c) The order of $H \cup K$ is 674
(d) K is normal subgroup of $H \cup K$
5. The radius of convergence of the power series $\sum_{n=1}^{\infty}\left(\frac{n^{2}}{4^{n}}\right) x^{5 n}$ is
(a) 4
(b) $\sqrt[5]{4}$
(c) $\frac{1}{4}$
(d) $\frac{1}{\sqrt[5]{4}}$
6. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences of real number defined by $x_{1}=1, y_{1}=\frac{1}{2}, x_{n+1}=\frac{x_{n}+y_{n}}{2}$, and $y_{n+1}=\sqrt{x_{n} y_{n}}$ for all $n \in \mathbb{N}$. Then which one of the following is true ?
(a) $\left(x_{n}\right)$ is convergent, but $\left(y_{n}\right)$ is not convergent
(b) $\left(x_{n}\right)$ is convergent, but $\left(y_{n}\right)$ is convergent
(c) Both $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are convergent and $\lim _{n \rightarrow \infty} x_{n}>\lim _{n \rightarrow \infty} y_{n}$
(d) Both $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are convergent and $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$
7. Suppose $a_{n}=\frac{3^{n}+3}{5^{n}-5}$ and $b_{n}=\frac{1}{\left(1+n^{2}\right)^{1 / 4}}$ for $n=2,3,4, \ldots$. Then which of the following is true ?
(a) Both $\sum_{n=2}^{\infty} a_{n}$ and $\sum_{n=2}^{\infty} b_{n}$ are convergent
(b) Both $\sum_{n=2}^{\infty} a_{n}$ and $\sum_{n=2}^{\infty} b_{n}$ are divergent
(c) $\sum_{n=2}^{\infty} a_{n}$ is convergent and $\sum_{n=2}^{\infty} b_{n}$ is divergent
(d) $\sum_{n=2}^{\infty} a_{n}$ is divergent and $\sum_{n=2}^{\infty} b_{n}$ is convergent
8. Consider the sereis $\sum_{n=1}^{\infty} \frac{1}{n^{m}\left(1+\frac{1}{n^{p}}\right)}$ where m and p are real number. Under which of the following conditions does the above converge?
(a) $m>1$
(b) $0<m<1$ and $p>1$
(c) $0<m \leq 1$ and $0 \leq p \leq 1$
(d) $m=1$ and $p>1$
9. Let c be a positive real number and let $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} e^{s^{2}} d s$ for $(x, t) \in \mathbb{R}^{2}$ Then which one of the following is true?
(a) $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ on \mathbb{R}^{2}.
(b) $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ on \mathbb{R}^{2}.
(c) $\frac{\partial u}{\partial t} \frac{\partial u}{\partial x}=0$ on \mathbb{R}^{2}.
(d) $\frac{\partial^{2} u}{\partial t \partial x}=0$ on \mathbb{R}^{2}.
10. Let $\theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. Consider the functions $u=\mathbb{R}^{2}-\{(0,0)\} \rightarrow \mathbb{R}$ and $v: \mathbb{R}^{2}-\{(0,0)\} \rightarrow \mathbb{R}$ given by $u(x, y)=x-\frac{x}{x^{2}+y^{2}}$ and $v(x, y)=y+\frac{y}{x^{2}+y^{2}}$

The value of the determinant $\left|\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right|$ at the point $(\cos \theta, \sin \theta)$ is equal to
(a) $4 \sin \theta$
(b) $4 \cos \theta$
(c) $4 \sin ^{2} \theta$
(d) $4 \cos ^{2} \theta$
11. Consider the open rectangle $G=\left\{(s, t) \in \mathbb{R}^{2}: 0<s<1\right.$ and $\left.0<t<1\right\}$ and the map $T: G \rightarrow \mathbb{R}^{2}$ given by $T(s, t)=\left(\frac{\pi s(1-t)}{2}, \frac{\pi(1-s)}{2}\right)$ for $(s, t) \in G$
Then the area of the image $T(G)$ of the map T is equal to
(a) $\frac{\pi}{4}$
(b) $\frac{\pi^{2}}{4}$
(c) $\frac{\pi^{2}}{8}$
(d) 1
12. Let T denote the sum of the convergent series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots .+\frac{(-1)^{n+1}}{n}+\ldots$ and let S denote the sum of the convergent series $1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\ldots .=\sum_{n=1}^{\infty} a_{n}$, where $a_{3 m-2}=\frac{1}{2 m-1}, a_{3 m-1}=\frac{-1}{4 m-2}$ and $a_{3 m}=\frac{-1}{4 m}$ for $m \in \mathbb{N}$. Then which one of the follolwing is true ?
(a) $T=S$ and $S \neq 0$
(b) $2 T=S$ and $S \neq 0$
(c) $T=2 S$ and $S \neq 0$
(d) $T=S=0$
13. Let $u: \mathbb{R} \rightarrow \mathbb{R}$ be a twice continuously differentiable function such that $u(0)>0$ and $u^{\prime}(0)>0$. Suppose u satisfies $u^{\prime \prime}(x)=\frac{u(x)}{1+x^{2}}$ for all $x \in \mathbb{R}$.
Consider the following two statements:
I. The function $u u^{\prime}$ is monotonically increasing on $[0, \infty)$
II. The function u is monotonically increasing on $[0, \infty)$

Then which one of the following is correct?
(a) Both I and II are false
(b) Both I and II are true
(c) I is false, but II is true
(d) I is true, but II is false
14. The value of $\lim _{n \rightarrow \infty} \sum_{k=2}^{n} \frac{\sqrt{n+1}-\sqrt{n}}{k(\ln k)^{2}}$ is equal to
(a) ∞
(b) 1
(c) e
(d) 0
15. For $t \in \mathbb{R}$, let $[t]$ denote the greatestinteger less than or equal tot, Define functions $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x, y)=\left\{\begin{array}{cl}\frac{-1}{x^{2}-y} & \text { if } x^{2} \neq y, \\ 0 & \text { if } x^{2}=y\end{array}\right.$ and $g(x)=\left\{\begin{array}{cl}\frac{\sin x}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$
Then which one of the following is False?
(a) $\lim _{(x, y) \rightarrow(\sqrt{2}, \pi)} \cos \left(\frac{x^{2} y}{x^{2}+1}\right)=\frac{-1}{2}$
(b) $\lim _{(x, y) \rightarrow(\sqrt{2}, 2)} e^{h(x, y)}=0$
(c) $\lim _{(x, y) \rightarrow(e, e)} \ln \left(x^{y-[y]}\right)=e-2$
(d) $\lim _{(x, y) \rightarrow(0,0)} e^{2 y} g(x)=1$
16. Let $P \in M_{4}(\mathbb{R})$ be such that P^{4} is the zero matrix, but P^{3} is a nonzero matrix. Then which one of the following is False?
(a) For every nonzero vector $v \in \mathbb{R}^{4}$, then subset $\left\{v, P v, P^{2} v, P^{3} v\right\}$ of the real vector space \mathbb{R}^{4} is linearly independent.
(b) The rank P^{k} is $4-k$ for every $k \in\{1,2,3,4\}$
(c) 0 is an eigenvalue of P.
(d) If $Q \in M_{4}(\mathbb{R})$ is such that Q^{4} is the zero matrix, but Q^{3} is a nonzero matrix, then there exists a nonsingular matrix $S \in M_{4}(\mathbb{R})$ such that $S^{-1} Q S=P$
17. For $X, Y \in M_{2}(\mathbb{R})$, define $(X, Y)=X Y-Y X$. Let $\mathrm{O} \in M_{2}(\mathbb{R})$ denote the zero matrix. Consider the two statements:
$P:(X,(Y, Z))+(Y,(Z, X))+(Z,(X, Y))=0$ for all $X, Y, Z \in M_{2}(\mathbb{R})$
$Q:(X,(Y, Z))=((X, Y), Z)$ for all $X, Y, Z \in M_{2}(\mathbb{R})$
Then which of the following is correct?
(a) Both P and Q are true
(b) P is true, but Q is false
(c) P is false, but Q is true
(d) Both P and Q are false
18. Consider the system of linear equations
$x+y+t=4$,
$2 x-4 t=7$,
$x+y+z=5$,
$x-3 y-z-10 t=\lambda$,
Where x, y, z, t are variables and λ is a constant. Then which one of the following is true?
(a) If $\lambda=1$, then the system has a unique solution
(b) If $\lambda=2$, then the system has infinitely many solutions.
(c) If $\lambda=1$, then the system has infinitely many solutions.
(d) If $\lambda=2$, then the system has a unique solution
19. Consider the group $(\mathbb{Q},+)$ and its subgroup $(\mathbb{Z},+)$. For the quotient group \mathbb{Q} / \mathbb{Z}, whhich one of the following is False?
(a) \mathbb{Q} / \mathbb{Z}, contains a subgroup isomorphic to $(\mathbb{Z},+)$.
(b) There is exactly one group homomorphism from \mathbb{Q} / \mathbb{Z} to $(\mathbb{Q},+)$.
(c) For all $n \in \mathbb{N}$, there exists $g \in \mathbb{Q} / \mathbb{Z}$ such that the order of g is n.
(d) \mathbb{Q} / \mathbb{Z} is not a cyclic group
20. For $P \in M_{5}(\mathbb{R})$ and $i, j \in\{1,2, \ldots 5\}$, let $p_{i j}$ denote the $(i, j)^{\text {th }}$ entry of P . Let
$S=\left\{P \in M_{5}(\mathbb{R}): p_{i j}=p_{r s}\right.$ for $i, j, r, s \in\{1,2, \ldots, 5\}$ with $\left.i+r=j+s\right\}$
Then which one of the following is False?
(a) S is a subspace of the vector space over \mathbb{R} of all 5×5 symmetric matrices.
(b) The dimension of S over \mathbb{R} is 5 .
(c) The dimension of S over \mathbb{R} is 11 .
(d) If $P \in S$ and all the entries of P are integers, then 5 divides the sum of all the diagonal entries of P .
21. On the open interval $(-\mathrm{c}, \mathrm{c})$ where c is a positive real number, $y(x)$ is an infinitely differentiable solution of the differential equation
$\frac{d y}{d x}=y^{2}-1+\cos x$,
with the initial condition $y(0)=0$. Then which one of the following is correct?
(a) $y(x)$ has a local maximum at the origin
(b) $y(x)$ has a local minimum at the origin
(c) $y(x)$ strictly increasing on the open interval $(-\delta, \delta)$ for some positive real number δ.
(d) $y(x)$ strictly decreasing on the open interval $(-\delta, \delta)$ for some positive real number δ.
22. Let $H: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $H(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$ for $x \in \mathbb{R}$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\int_{0}^{\pi} H(x \sin \theta) d \theta$ for $x \in \mathbb{R}$. Then which one of the following is true?
(a) $x f^{\prime \prime}(x)+f^{\prime}(x)+x f(x)=0$ for all $x \in \mathbb{R}$
(b) $x f^{\prime \prime}(x)-f^{\prime}(x)+x f(x)=0$ for all $x \in \mathbb{R}$
(c) $x f^{\prime \prime}(x)+f^{\prime}(x)-x f(x)=0$ for all $x \in \mathbb{R}$
(d) $x f^{\prime \prime}(x)-f^{\prime}(x)-x f(x)=0$ for all $x \in \mathbb{R}$
23. Consider the differential equation
$y^{\prime \prime}+a y^{\prime}+y=\sin x$ for $x \in \mathbb{R}$
Then which one of the following is true?
(a) If $a=0$, then all the solutions of $\left({ }^{* *}\right)$ are unbounded over \mathbb{R}.
(b) If $a=1$, then all the solutions of $\left({ }^{* *}\right)$ are unbounded over $(0, \infty)$.
(c) If $a=1$, then all the solutions of $\left({ }^{* *}\right)$ tend to zero as $x \rightarrow \infty$
(d) If $a=2$, then all the solutions of $\left({ }^{* *}\right)$ are bounded over $(-\infty, 0)$
24. For $g \in \mathbb{Z}$, let $\bar{g} \in \mathbb{Z}_{37}$ denote the reside classs of g module 37 . Consider the group $U_{37}=\left\{\bar{g} \in \mathbb{Z}_{37}: 1 \leq g \leq 37\right.$ with $\left.\operatorname{gcd}(g, 37)=1\right\}$ with respect to multiplication modulo 37. Then which one of the following is False?
(a) The set $\left\{\bar{g} \in U_{37}: \bar{g}=(\bar{g})^{-1}\right\}$ contains exactly 2 elements
(b) The order of the element $1 \overline{0}$ in U_{37} is 36
(c) There is exactly group homomorphism from U_{37} to $(\mathbb{Z},+)$.
(d) There is exactly group homomorphism from U_{37} to $(\mathbb{Q},+)$
25. For some real number c with $0<c<1$, let $\phi:(1-c, 1+c) \rightarrow(0, \infty)$ be a differentiable function such that $\phi(1)=1$ and $y=\phi(x)$ is a solution of the differentiable equation $\left(x^{2}+y^{2}\right) d x-4 x y d y=0$. Then which one of the following is true?
(a) $\left(3(\phi(x))^{2}+x^{2}\right)^{2}=4 x$
(b) $\left(3(\phi(x))^{2}-x^{2}\right)^{2}=4 x$
(c) $\left(3(\phi(x))^{2}+x^{2}\right)^{2}=4 \phi(x)$
(d) $\left(3(\phi(x))^{2}-x^{2}\right)^{2}=4 \phi(x)$
26. For a 4×4 matrix $M \in M_{4}(\mathbb{C})$, let \bar{M} denote the matrix obtained from M by replacing each entry of M by its complex conjugate. Consider the real vector space $H=\left\{M \in M_{4}(\mathbb{C}): M^{T}=\bar{M}\right\}$ where M^{T} denotes the transpose of M . The dimension of H as a vector space over \mathbb{R} is equal to
(a) 6
(b) 16
(c) 15
(d) 12
27. Let a, b be positive real number such that $a<b$ Given that $\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2}$ the value of $\lim _{N \rightarrow \infty} \int_{0}^{N} \frac{1}{t^{2}}\left(e^{-a t^{2}}-e^{-b t^{2}}\right) d t$ is equal to
(a) $\sqrt{\pi}(\sqrt{a}-\sqrt{b})$
(b) $\sqrt{\pi}(\sqrt{a}+\sqrt{b})$
(c) $-\sqrt{\pi}(\sqrt{a}+\sqrt{b})$
(d) $\sqrt{\pi}(\sqrt{b}-\sqrt{a})$
28. For $-1 \leq x \leq 1$, if $f(x)$ is the sum of the convergent power series
$x+\frac{x^{2}}{2^{2}}+\frac{x^{3}}{3^{2}}+\ldots+\frac{x^{n}}{n^{2}}+\ldots$ then $f\left(\frac{1}{2}\right)$ is equal to
(a) $\int_{0}^{1 / 2} \frac{\ln (1-t)}{t} d t$
(b) $-\int_{0}^{1 / 2} \frac{\ln (1-t)}{t} d t$
(c) $\int_{0}^{1 / 2} t \ln (1+t) d t$
(d) $\int_{0}^{1 / 2} t \ln (1-t) d t$
29. For $n \in \mathbb{N}$ and $x \in[1, \infty]$, let $f_{n}(x)=\int_{0}^{\pi}\left(x^{2}+(\cos \theta) \sqrt{x^{2}-1}\right)^{n} d \theta$. Then which one of the following is true ?
(a) $f_{n}(x)$ is not a polynomial in x if n is odd and $n \geq 3$.
(b) $f_{n}(x)$ is not a polynomial in x if n is odd and $n \geq 4$.
(c) $f_{n}(x)$ is a polynomial in x for all $n \in \mathbb{N}$
(d) $f_{n}(x)$ is not a polynomial in x for any $n \geq 3$.
30. Let P be a 3×3 real matrix having eigenvalue $\lambda_{1}=0, \lambda_{2}=1$ and $\lambda_{3}=-1$ Further, $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ are eigenvectors of the matrix P corresponding to the eigen value λ_{1}, λ_{2} and λ_{3}, respectively. Then the entry in the first row and the third column of P is
(a) 0
(b) 1
(c) -1
(d) 2

SECTION-B

31. Let $(-c, c)$ be the largest open interval in \mathbb{R} (where c is either a positive real number or $c=\infty$) on which the solution $y(x)$ of the differential equation
$\frac{d y}{d x}=x^{2}+y^{2}+1$ with initial conditiony $(0)=0$ exists and is unique. Then which of the following is/are true ?
(a) $y(x)$ is an odd function on $(-c, c)$
(b) $y(x)$ is an even function on $(-c, c)$
(c) $(y(x))^{2}$ has a local minimum at 0
(d) $(y(x))^{2}$ has a local maximum at 0
32. Let S be the set of all continuous function $f:[-1,1] \rightarrow \mathbb{R}$ satisfying the following three contitions
(i) f is infinitely differentiable on the open inverval $(-1,1)$
(ii) the Taylor's series $f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots$ of f at 0 converges to $f(x)$ for each $x \in(-1,1)$
(ii) $f\left(\frac{1}{n}\right)=0$ for all $n \in \mathbb{N}$

Then which of the following is/are true?
(a) $f(0)=0$ for every $f \in S$
(b) $f^{\prime}\left(\frac{1}{2}\right)=0$ for every $f \in S$
(c) There exists $f \in S$ such that $f^{\prime}\left(\frac{1}{2}\right) \neq 0$
(d) There exists $f \in S$ such that $f(x) \neq 0$ for some $x \in[-1,1]$
33. Define $f:[0,1] \rightarrow[0,1]$ by
$f(x)= \begin{cases}1 & \text { if } x=0 \\ \frac{1}{n} & \text { if } x=\frac{m}{n} \text { for some } m, n \in \mathbb{N} \text { with } m \leq n \text { and } \operatorname{gcd}(m, n)=1 \\ 0 & \text { if } x \in[0,1] \text { is irractional }\end{cases}$
and define $g:[0,1] \rightarrow[0,1]$ by $g(x)= \begin{cases}0 & \text { if } x=0 \\ 1 & \text { if } x \in(0,1]\end{cases}$
Then which of the following is/are True?
(a) f is Riemann integrable on $[0,1]$
(b) g is Riemann integrable on $[0,1]$
(c) The composite function $f \circ g$ is Riemann integrable on $[0,1]$
(d) The composite function g of is Riemann integrable on $[0,1]$
34. Let S be the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying
$|f(x)-f(y)|^{2} \leq|x-y|^{3}$ for all $x, y \in \mathbb{R}$.
Then which of the following is/are True?
(a) Every function in S is differentiable
(b) There exists a function $f \in S$ such that f is twice differetiable, but f is not thwice differentiable
(c) There exists a function $f \in S$ such that f is twice differetiable, but f is not thrice differentiable
(d) Every function in S is infinitely differentiable
35. The real valued function $y(x)$ defined on \mathbb{R} is said to be periodic if there exists a real number $\mathrm{T}>0$ such that $y(x+T)=y(x)$ for all $x \in \mathbb{R}$. Consider the differential equation $\frac{d^{2} y}{d x^{2}}+4 y=\sin (a x), x \in \mathbb{R},\left(^{*}\right)$ where $\mathrm{a} \in \mathbb{R}$ is a constant. Then Which of the following is/are true?
(a) All solutions of $\left({ }^{*}\right)$ are periodic for every choice of a.
(b) All solutions of $\left({ }^{*}\right)$ are periodic for every choice of $a \in \mathbb{R}-\{-2,2\}$.
(c) All solutions of $\left({ }^{*}\right)$ are periodic for every choice of $a \in \mathbb{Q}-\{-2,2\}$
(d) $a \in \mathbb{R}-\mathbb{Q}$ Then there is a unique periodic solution of (*)
36. Let M be a positive real number and let $u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous functions satisfying $\sqrt{u(x, y)^{2}+v(x, y)^{2}} \geq M \sqrt{x^{2}+y^{2}}$ for all $(x, y) \in \mathbb{R}^{2}$. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $F(x, y)=(u(x, y), v(x, y))$ for $(x, y) \in \mathbb{R}^{2}$. Then of the following is/ are true?
(a) F is injective
(b) If K is open \mathbb{R}^{2}, then $F(K)$ is open in \mathbb{R}^{2}.
(c) If K is closed in \mathbb{R}^{2}, then $F(K)$ is closed in \mathbb{R}^{2}.
(d) If E is closed and bounded in \mathbb{R}^{2}, then $F^{-1}(E)$ is closed and bounded in \mathbb{R}^{2}.
37. Let G be a finite group of order at least two and let e denote the identity element of G . Let $\sigma: G \rightarrow G$ be a bijective group homomorphism that satisfies the following two condition
(i) if $\sigma(g)=g$ for some $g \in G$, then $g=e$
(ii) if $(\sigma \circ \sigma)(g)=g$ for all $g \in G$
then which of the following is/are correct ?
(a) For each $g \in G$, there $h \in G$ such that $h^{-1} \sigma(h)=g$
(b) There exists $x \in G$ such that $x \sigma(x) \neq e$
(c) The map σ satisfies $\sigma(x)=x^{-1}$ for every $x \in G$
(d) The order of the group G is an odd number
38. Let $\left(x_{n}\right)$ be a sequence of real numbers. Consider the set $P=\left\{n \in \mathbb{N}: x_{n}>x_{m}\right.$ for all $m \in \mathbb{N}$ with $\left.m>n\right\}$. Then which of the following is/are True?
(a) If P is finite, then $\left(x_{n}\right)$ has a monotonically increasing subsequence.
(b) If P is finite, then no subsequence of $\left(x_{n}\right)$ is monotonically increasing.
(c) If P is infinite, then $\left(x_{n}\right)$ has a monotonically decreasing subsequence.
(d) If P is infinite, then no subsequence of $\left(x_{n}\right)$ is monotonically decreasing.
39. Let V be the real vector space consisting of all polynomials in one variable with real coefficients and having degree at most 5 , together with the zero polynomial. Let $T: V \rightarrow \mathbb{R}$ be the linear map defined by $T(1)=1$ and

$$
T(x(x-1) \ldots(x-k+1))=1 \text { for } 1 \leq k \leq 5 .
$$

Then which of the following is/are True?
(a) $T\left(x^{4}\right)=15$
(b) $T\left(x^{3}\right)=5$
(c) $T\left(x^{4}\right)=14$
(d) $T\left(x^{3}\right)=3$
40. Let P be a fixed 3×3 matrix with entries in \mathbb{R}. which of the following maps from $M_{3}(\mathbb{R})$ to $M_{3}(\mathbb{R})$ is/are linear ?
(a) $T_{1}: M_{3}(\mathbb{R}) \rightarrow M_{3}(\mathbb{R})$ given by $T_{1}(M)=M P-P M$ for $M \in M_{3}(\mathbb{R})$
(b) $T_{2}: M_{3}(\mathbb{R}) \rightarrow M_{3}(\mathbb{R})$ given by $T_{2}(M)=M^{2} P-P^{2} M$ for $M \in M_{3}(\mathbb{R})$
(c) $T_{3}: M_{3}(\mathbb{R}) \rightarrow M_{3}(\mathbb{R})$ given by $T_{3}(M)=M P^{2}+P^{2} M$ for $M \in M_{3}(\mathbb{R})$
(d) $T_{4}: M_{3}(\mathbb{R}) \rightarrow M_{3}(\mathbb{R})$ given by $T_{4}(M)=M P^{2}-P M^{2}$ for $M \in M_{3}(\mathbb{R})$

SECTION-C

41. The value of the limit
$\lim _{n \rightarrow \infty}\left(\frac{\left(1^{4}+2^{4}+\ldots+n^{4}\right)}{n^{5}}+\frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{n+1}}+\frac{1}{\sqrt{n+2}}+\ldots+\frac{1}{\sqrt{4 n}}\right)\right)$ is equal to \qquad (Rounded off to two decimal places)
42. Consider the function $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $u=\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}^{4} x_{3}^{2}-x_{1}^{3} x_{3}^{4}-26 x_{1}^{2} x_{2}^{2} x_{3}^{3}$. Let $c \in \mathbb{R}$ and $k \in \mathbb{N}$ be such that $x_{1} \frac{\partial u}{\partial x_{2}}+2 x_{2} \frac{\partial u}{\partial x_{3}}$ evaluated at the point $\left(t, t^{2}, t^{3}\right)$, equals $c t^{k}$ for every $t \in \mathbb{R}$.
Then the vlaue of k is equal to \qquad
43. Let $y(x)$ be the solution of the differential equation $\frac{d y}{d x}+3 x^{2} y=x^{2}$, for $x \in \mathbb{R}$ satisfying the initial condition $y(0)=4$.
Then $\lim _{x \rightarrow \infty} y(x)$ is equal to ___ (Rounded off to two decimal places)
44. The sum of the series $\sum_{n=1}^{\infty} \frac{1}{(4 n-3)(4 n+1)}$ is equal to \qquad (Rounded off to two decimal places)
45. The number of distinct subgroups of \mathbb{Z}_{999} is \qquad]
46. The number of elements of order 12 in the symmetric group S_{7} is equal to \qquad
47. Let $y(x)$ be the solution of the differential equation $x y^{2} y^{\prime}+y^{3}=\frac{\sin x}{x}$ for $x>0$ satisfying $y\left(\frac{\pi}{2}\right)=0$

Then the value of $y\left(\frac{5 \pi}{2}\right)$ is equal to \quad (Rounded off to two decimal places)
48. Consider the region $G=\left\{(x, y, z) \in \mathbb{R}^{3}: 0<z<x^{2}-y^{2}, x^{2}+y^{2}<1\right\}$. Then the volume of G is equal to \qquad (Rounded off to two decimal places)
49. Given that $y(x)$ is a solution of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=x^{2}$ on the interval $(0, \infty)$ such that $\lim _{x \rightarrow 0^{+}} y(x)$ exists and $y(1)=1$. The value of $y^{\prime}(1)$ is equal to \qquad (Rounded off to two decimal places)
50. Consider the family F_{1} of curves lying in the region $\left\{(x, y) \in \mathbb{R}^{2}: y>0\right.$ and $\left.0<x<\pi\right\}$ and given by $y=\frac{c(1-\cos x)}{\sin x}$, where c is positive real number.

Let F_{2} be the family of orthogonal trajectories to F_{1}. Consider the curve C belonging to the family F_{2} passing through the point $\left(\frac{\pi}{3}, 1\right)$. If a is real number such that $\left(\frac{4 \pi}{4}, a\right)$ lies on c then the vlaue of a^{4} is equal to \qquad (Rounded off to two decimal places)
51. For $t \in \mathbb{R}$, let $[t]$ denote the greatest integer less than or equal to t.

Let $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<4\right\}$. Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$ be defined by $f(0,0)=g(0,0)$ and
$f(x, y)=\left[x^{2}+y^{2}\right] \frac{x^{2} y^{2}}{x^{4}+y^{4}}, g(x, y)=\left[y^{2}\right] \frac{x y}{x^{2}+y^{2}}$
for $(x, y) \neq(0,0)$. Let E be the set of point of D at which both f and g are discontinuous. The number of elements in the set E is \qquad
52. If G is the region in \mathbb{R}^{2} given by $G=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1, \frac{x}{\sqrt{3}}<y<\sqrt{3 x}, x>0, y>0\right\}$ then the vlaue of $\frac{200}{\pi} \iint_{G} x^{2} d x d y$ is equal to \qquad (Rounded off to two decimal places)
53. Let $A=\left(\begin{array}{cc}1 & 1 \\ 0 & 1 \\ -1 & 1\end{array}\right)$ and A^{T} denote the transpose ofA. Let $u=\binom{u_{1}}{u_{2}}$ and $v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$ be coloum vectors with entries in \mathbb{R} such that $u_{1}^{2}+u_{2}^{2}=1$ and $v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=1$. Suppose $A u=\sqrt{2} v$ and $A^{T} v=\sqrt{2} u$ Then $\left|u_{1}+2 \sqrt{2} v_{1}\right|$ is equal to \qquad (Rounded off to two decimal places)
54. Let $f:[0, \pi] \rightarrow \mathbb{R}$ be the function defined by
$f(x)= \begin{cases}(x-\pi) e^{\sin x} & \text { if } 0 \leq x \leq \frac{\pi}{2} \\ x e^{\sin x}+\frac{4}{\pi} & \text { if } \frac{\pi}{2}<x \leq \pi\end{cases}$
then the value of $\int_{0}^{\pi} f(x) d x$ is equal to \qquad (Rounded off to two decimal places)
55. Let r be the radius of convergence of the power series
$\frac{1}{3}+\frac{x}{5}+\frac{x^{2}}{3^{2}}+\frac{x^{3}}{5^{2}}+\frac{x^{4}}{3^{3}}+\frac{x^{5}}{5^{3}}+\frac{x^{6}}{3^{4}}+\frac{x^{7}}{5^{4}}+\ldots$.
Then the vlaue of r^{2} equal to \qquad (Rounded off to two decimal places)
56. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=x^{2}+2 y^{2}-x$ for $(x, y) \in \mathbb{R}^{2}$

Let $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$ and $E=\left\{(x, y) \in \mathbb{R}^{2}: \frac{x^{2}}{4}+\frac{y^{2}}{9} \leq 1\right\}$.
Consider the sets
$\mathrm{D}_{\text {max }}=\{(a, b) \in D: f$ has absolute maximum on D at $(a, b)\}$
$\mathrm{D}_{\text {min }}=\{(a, b) \in D: f$ has absolute minimum on D at $(a, b)\}$
$\mathrm{E}_{\text {max }}=\{(c, d) \in E: f$ has absolute maximum on E at $(c, d)\}$
$\mathrm{E}_{\text {min }}=\{(c, d) \in E: f$ has absolute minimum on E at $(c, d)\}$
Then the total number of elements in the set $D_{\max } \cup D_{\min } \cup E_{\max } \cup E_{\min }$ is equl to \qquad
57. Consider the 4×4 matrix $M=\left(\begin{array}{llll}11 & 10 & 10 & 10 \\ 10 & 11 & 10 & 10 \\ 10 & 10 & 11 & 10 \\ 10 & 10 & 10 & 11\end{array}\right)$.

Then the value of the determinant of M is equal to \qquad
58. Let σ be the permutation in the symmetric group S_{5} given by
$\sigma(1)=2, \sigma(2)=3, \sigma(3)=1, \sigma(4)=5, \sigma(5)=4$. Define $N(\sigma)=\left\{\tau \in S_{5}: \sigma \circ \tau=\tau \circ \sigma\right\}$.
then the number of elements in $N(\sigma)$ is equal to \qquad -
59. Let $f:(-1,1) \rightarrow \mathbb{R}$ and $g:(-1,1) \rightarrow \mathbb{R}$ be thrice continuously differentiable functions such that $f(x) \neq g(x)$ for every nozero $\quad x \in(-1,1)$. Suppose $f(0)=\ln 2, \quad f^{\prime}(0)=\pi, \quad f^{\prime \prime}(0)=\pi^{2}$ and $f^{\prime \prime \prime}(0)=\pi^{9}$
and $g(0)=\ln 2, \quad g^{\prime}(0)=\pi, \quad g^{\prime \prime}(0)=\pi^{2} \quad$ and $\quad g^{\prime \prime \prime}(0)=\pi^{3}$.
Then the value of the $\operatorname{limit}_{x \rightarrow 0} \lim _{x \rightarrow 0} \frac{e^{f(x)}-e^{g(x)}}{f(x)-g(x)}$ is equal to \qquad (Rounded off to two decimal places)
60. If $f:[0, \infty) \rightarrow \mathbb{R}$ and $g:[0, \infty) \rightarrow \mathbb{R}$ are continuous function such that $\int_{0}^{x^{3} x^{2}} f(t) d t=x^{2}$ and
$\int_{0}^{g(x)} t^{2} d t=9(x+1)^{3}$ for all $x \in[0, \infty)$, then the value of $f(2)+g(2)+16 f(12)$ is equal to \qquad (Rounded off to two decimal places)

