PAPER : IIT-JAM

MATHEMATICS MA-2022

SECTION-A [Multiple Choice Questions (MCQ)]				
Q.1 – Q.10 carry ONE mark each.				
1.	Consider the 2×2 matrix $M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{R})$. If the eighth power of M satisfies $M^{8} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$, then the			
	value of x is (a) 21	(b) 22	(c) 34	(d) 35
2.	The rank of the 4×6 matri	$ \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} $ with	th entries in $\mathbb R$ is	
3.	degree at most 6, together	with the zero polynomial. Th	nen which one of the f	-
		is a subspace of V		
4.	 (c) {f∈V:(1/2) = f(1)} is a subspace of V (d) {f∈V:f'(1/2) = 1} is a subspace of V Let G be a group of order 2022. Let H and K be subgroups of G of order 337 and 674, respectively. If H∪K is also a subgroup of G, then which one of the following is False? (a) H is normal subgroup of H∪K (b) The order of H∪K ios 1011. (c) The order of H∪K is 674 (d) K is normal subgroup of H∪K 			
5.	The radius of convergence	e of the power series $\sum_{n=1}^{\infty} \left(\frac{n^2}{4^n} \right)^n$	$\int x^{5n}$ is	
	(a) 4	(b) <i>∜</i> 4	(c) $\frac{1}{4}$	(d) $\frac{1}{\sqrt[5]{4}}$
6.	Let (x_n) and (y_n) be sequences of real number defined by $x_1 = 1$, $y_1 = \frac{1}{2}$, $x_{n+1} = \frac{x_n + y_n}{2}$, and $y_{n+1} = \sqrt{x_n y_n}$			
	for all $n \in \mathbb{N}$. Then which one of the following is true ? (a) (x_n) is convergent, but (y_n) is not convergent (b) (x_n) is convergent, but (y_n) is convergent			
	(c) Both (x_n) and (y_n) are convergent and $\lim_{n \to \infty} x_n > \lim_{n \to \infty} y_n$			
	(d) Both (x_n) and (y_n) are convergent and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$			

2 PAPER : IIT-JAM 2022 Suppose $a_n = \frac{3^n + 3}{5^n - 5}$ and $b_n = \frac{1}{(1 + n^2)^{1/4}}$ for $n = 2, 3, 4, \dots$. Then which of the following is true ? 7. (a) Both $\sum_{n=2}^{\infty} a_n$ and $\sum_{n=2}^{\infty} b_n$ are convergent (b) Both $\sum_{n=2}^{\infty} a_n$ and $\sum_{n=2}^{\infty} b_n$ are divergent (c) $\sum_{n=2}^{\infty} a_n$ is convergent and $\sum_{n=2}^{\infty} b_n$ is divergent (d) $\sum_{n=2}^{\infty} a_n$ is divergent and $\sum_{n=2}^{\infty} b_n$ is convergent Consider the sere is $\sum_{n=1}^{\infty} \frac{1}{n^m \left(1 + \frac{1}{n^p}\right)}$ where m and p are real number. Under which of the following conditions 8. does the above converge (a) m > 1(b) 0 < m < 1 and p > 1(d) m = 1 and p > 1(c) $0 < m \le 1$ and $0 \le p \le 1$ Let *c* be a positive real number and let $u: \mathbb{R}^2 \to \mathbb{R}$ be defined by $u(x,t) = \frac{1}{2c} \int_{x-t}^{x+ct} e^{s^2} ds$ for $(x,t) \in \mathbb{R}^2$ 9. Then which one of the following is true? (b) $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial r^2}$ on \mathbb{R}^2 . (a) $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial u^2}$ on \mathbb{R}^2 . (c) $\frac{\partial u}{\partial t} \frac{\partial u}{\partial r} = 0$ on \mathbb{R}^2 . (d) $\frac{\partial^2 u}{\partial t \partial r} = 0$ on \mathbb{R}^2 . Let $\theta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. Consider the functions $u = \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}$ and $v : \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}$ given by 10. $u(x, y) = x - \frac{x}{x^2 + y^2}$ and $v(x, y) = y + \frac{y}{x^2 + y^2}$ The value of the determinant $\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$ at the point (cos θ , sin θ) is equal to (a) $4\sin\theta$ (b) $4\cos\theta$ (c) $4\sin^2\theta$ (d) $4\cos^2\theta$ Consider the open rectangle $G = \{(s,t) \in \mathbb{R}^2 : 0 < s < 1 \text{ and } 0 < t < 1\}$ and the map $T: G \to \mathbb{R}^2$ given by 11.

$$T(s,t) = \left(\frac{\pi s(1-t)}{2}, \frac{\pi(1-s)}{2}\right) \text{ for } (s,t) \in G$$

Then the area of the image T(G) of the map T is equal to

(a) $\frac{\pi}{4}$ (b) $\frac{\pi^2}{4}$ (c) $\frac{\pi^2}{8}$ (d) 1

12.

13.

16.

I.

II.

Let T denote the sum of the convergent series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots + \frac{(-1)^{n+1}}{n} + \dots$ and let S denote the sum of the convergent series $1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \dots = \sum_{n=1}^{\infty} a_{n}$, where $a_{3m-2} = \frac{1}{2m-1}, a_{3m-1} = \frac{-1}{4m-2}$ and $a_{3m} = \frac{-1}{4m}$ for $m \in \mathbb{N}$. Then which one of the follolwing is true? (c) T = 2S and $S \neq 0$ (d) T = S = 0(b) 2T = S and $S \neq 0$ (a) T = S and $S \neq 0$ Let $u: \mathbb{R} \to \mathbb{R}$ be a twice continuously differentiable function such that u(0) > 0 and u'(0) > 0. Suppose *u* satisfies $u''(x) = \frac{u(x)}{1+x^2}$ for all $x \in \mathbb{R}$. Consider the following two statements: The function uu' is monotonically increasing on $[0, \infty)$ The function *u* is monotonically increasing on $[0, \infty)$ Then which one of the following is correct? (a) Both I and II are false (b) Both I and II are true (c) I is false, but II is true (d) I is true, but II is false 1 $\sum_{n=1}^{n} \sqrt{n+1} - \sqrt{n}$.

0

14. The value of
$$\lim_{n \to \infty} \sum_{k=2}^{n} \frac{\sqrt{n+1}-\sqrt{n}}{k(\ln k)^2}$$
 is equal to
(a) ∞ (b) 1 (c) e (d)

For $t \in \mathbb{R}$, let [t] denote the greatest integer less than or equal to t, Define functions $h: \mathbb{R}^2 \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ by 15.

$$h(x,y) = \begin{cases} \frac{-1}{x^2 - y} & \text{if } x^2 \neq y, \\ 0 & \text{if } x^2 = y \end{cases} \text{ and } g(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Then which one of the following is False ?
(a) $\lim_{(x,y) \to (\sqrt{2},\pi)} \cos\left(\frac{x^2 y}{x^2 + 1}\right) = \frac{-1}{2}$ (b) $\lim_{(x,y) \to (\sqrt{2},2)} e^{h(x,y)} = 0$
(c) $\lim_{(x,y) \to (\sqrt{2},\pi)} \ln\left(x^{y-[y]}\right) = e - 2$ (d) $\lim_{(x,y) \to (\sqrt{2},2)} e^{2y} g(x) = 1$

Let
$$P \in M_4(\mathbb{R})$$
 be such that P^4 is the zero matrix, but P^3 is a nonzero matrix. Then which one of the

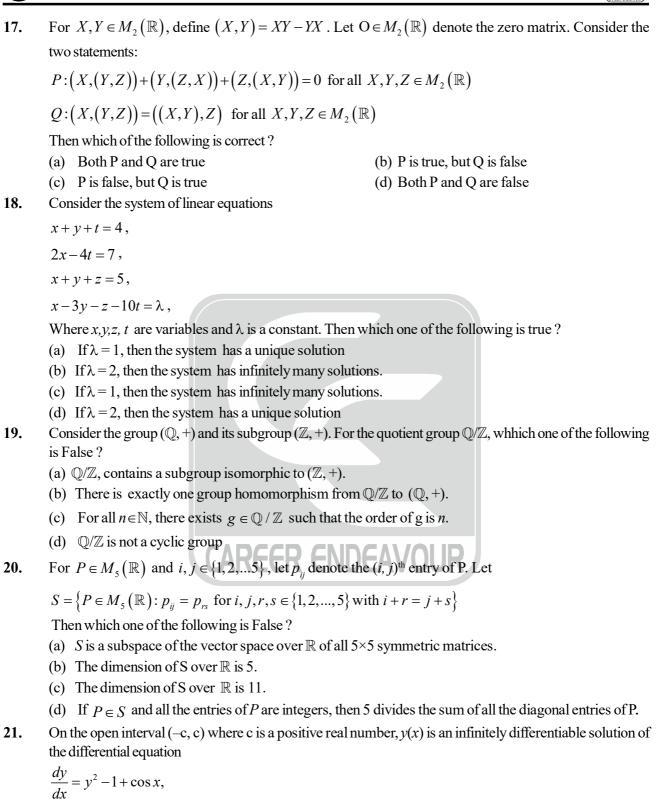
following is False? (a) For every nonzero vector $v \in \mathbb{R}^4$, then subset $\{v, Pv, P^2v, P^3v\}$ of the real vector space \mathbb{R}^4 is linearly

- (b) The rank P^k is 4 k for every $k \in \{1, 2, 3, 4\}$
- (c) 0 is an eigenvalue of P.

independent.

(d) If $Q \in M_4(\mathbb{R})$ is such that Q^4 is the zero matrix, but Q^3 is a nonzero matrix, then there exists a nonsingular matrix $S \in M_4(\mathbb{R})$ such that $S^{-1}QS = P$

4



with the initial condition y(0) = 0. Then which one of the following is correct?

- (a) y(x) has a local maximum at the origin
- (b) y(x) has a local minimum at the origin
- (c) y(x) strictly increasing on the open interval $(-\delta, \delta)$ for some positive real number δ .
- (d) y(x) strictly decreasing on the open interval $(-\delta, \delta)$ for some positive real number δ .

Let $H:\mathbb{R}\to\mathbb{R}$ be the function given by $H(x)=\frac{1}{2}(e^x+e^{-x})$ for $x\in\mathbb{R}$. Let $f:\mathbb{R}\to\mathbb{R}$ be defined 22. by $f(x) = \int_{0}^{\pi} H(x \sin \theta) d\theta$ for $x \in \mathbb{R}$. Then which one of the following is true? (a) xf''(x) + f'(x) + xf(x) = 0 for all $x \in \mathbb{R}$ (b) xf''(x) - f'(x) + xf(x) = 0 for all $x \in \mathbb{R}$ (c) xf''(x) + f'(x) - xf(x) = 0 for all $x \in \mathbb{R}$ (d) xf''(x) - f'(x) - xf(x) = 0 for all $x \in \mathbb{R}$ Consider the differential equation 23. (**) $y'' + ay' + y = \sin x$ for $x \in \mathbb{R}$ Then which one of the following is true? (a) If a = 0, then all the solutions of (**) are unbounded over \mathbb{R} . (b) If a = 1, then all the solutions of (**) are unbounded over $(0, \infty)$. (c) If a = 1, then all the solutions of (**) tend to zero as $x \to \infty$ (d) If a = 2, then all the solutions of (**) are bounded over $(-\infty, 0)$ For $g \in \mathbb{Z}$, let $\overline{g} \in \mathbb{Z}_{37}$ denote the reside classs of g module 37. Consider the group 24. $U_{37} = \{\overline{g} \in \mathbb{Z}_{37} : 1 \le g \le 37 \text{ with } \gcd(g, 37) = 1\}$ with respect to multiplication modulo 37. Then which one of the following is False? (a) The set $\left\{ \overline{g} \in U_{37} : \overline{g} = (\overline{g})^{-1} \right\}$ contains exactly 2 elements (b) The order of the element $1\overline{0}$ in U_{37} is 36 (c) There is exactly group homomorphism from U_{37} to $(\mathbb{Z},+)$. (d) There is exactly group homomorphism from U_{37} to $(\mathbb{Q}, +)$ For some real number c with 0 < c < 1, let $\phi: (1-c, 1+c) \rightarrow (0, \infty)$ be a differentiable function such that 25. $\phi(1) = 1$ and $y = \phi(x)$ is a solution of the differentiable equation $(x^2 + y^2) dx - 4xy dy = 0$. Then which one of the following is true? (b) $(3(\phi(x))^2 - x^2)^2 = 4x$ (a) $(3(\phi(x))^2 + x^2)^2 = 4x$ (c) $(3(\phi(x))^2 + x^2)^2 = 4\phi(x)$ (d) $(3(\phi(x))^2 - x^2)^2 = 4\phi(x)$ For a 4×4 matrix $M \in M_4(\mathbb{C})$, let \overline{M} denote the matrix obtained from M by replacing each entry of M by 26. its complex conjugate. Consider the real vector space $H = \{M \in M_4(\mathbb{C}) : M^T = \overline{M}\}$ where M^T denotes the transpose of M. The dimension of H as a vector space over \mathbb{R} is equal to (a) 6 (b) 16 (c) 15 (d) 12

27. Let *a*, *b* be positive real number such that a < b Given that $\lim_{N \to \infty} \int_{0}^{N} e^{-t^{2}} dt = \frac{\sqrt{\pi}}{2}$ the value of

$$\lim_{N \to \infty} \int_{0}^{n} \frac{1}{t^{2}} \left(e^{-at^{2}} - e^{-bt^{2}} \right) dt \text{ is equal to}$$
(a) $\sqrt{\pi} \left(\sqrt{a} - \sqrt{b} \right)$ (b) $\sqrt{\pi} \left(\sqrt{a} + \sqrt{b} \right)$ (c) $-\sqrt{\pi} \left(\sqrt{a} + \sqrt{b} \right)$ (d) $\sqrt{\pi} \left(\sqrt{b} - \sqrt{a} \right)$

5

For $-1 \le x \le 1$, if f(x) is the sum of the convergent power series 28. $x + \frac{x^2}{2^2} + \frac{x^3}{3^2} + \dots + \frac{x^n}{n^2} + \dots$ then $f\left(\frac{1}{2}\right)$ is equal to (a) $\int_{0}^{1/2} \frac{\ln(1-t)}{t} dt$ (b) $-\int_{0}^{1/2} \frac{\ln(1-t)}{t} dt$ (c) $\int_{0}^{1/2} t \ln(1+t) dt$ (d) $\int_{0}^{1/2} t \ln(1-t) dt$ For $n \in \mathbb{N}$ and $x \in [1,\infty]$, let $f_n(x) = \int_{\infty}^{\pi} \left(x^2 + (\cos \theta)\sqrt{x^2 - 1}\right)^n d\theta$. Then which one of the following is true? 29. (a) $f_n(x)$ is not a polynomial in x if n is odd and $n \ge 3$. (b) $f_n(x)$ is not a polynomial in x if n is odd and $n \ge 4$. (c) $f_n(x)$ is a polynomial in x for all $n \in \mathbb{N}$ (d) $f_n(x)$ is not a polynomial in x for any $n \ge 3$. Let P be a 3×3 real matrix having eigenvalue $\lambda_1 = 0, \lambda_2 = 1$ and $\lambda_3 = -1$ Further, $v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ and 30. $v_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ are eigenvectors of the matrix P corresponding to the eigen value λ_1, λ_2 and λ_3 , respectively. Then the entry in the first row and the third column of P is (a) 0 (b) 1 (c) - 1(d) 2 **SECTION-B** Let (-c, c) be the largest open interval in \mathbb{R} (where c is either a positive real number or $c = \infty$) on which the 31. solution y(x) of the differential equation $\frac{dy}{dx} = x^2 + y^2 + 1$ with initial condition y (0) = 0 exists and is unique. Then which of the following is/are true? (a) y(x) is an odd function on (-c,c)
(b) y(x) is an even function on (-c,c)
(c) (y(x))² has a local minimum at 0
(d) (y(x))² has a local maximum at 0

PAPER : IIT-JAM 2022

- 32. Let S be the set of all continuous function $f: [-1,1] \to \mathbb{R}$ satisfying the following three contitions (i) f is infinitely differentiable on the open inverval (-1, 1)

(ii) the Taylor's series
$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots$$
 of f at 0 converges to $f(x)$ for each $x \in (-1,1)$

(ii)
$$f\left(\frac{1}{n}\right) = 0$$
 for all $n \in \mathbb{N}$

6

Then which of the following is/are true?

(a)
$$f(0) = 0$$
 for every $f \in S$
(b) $f'\left(\frac{1}{2}\right) = 0$ for every $f \in S$

- (c) There exists $f \in S$ such that $f'\left(\frac{1}{2}\right) \neq 0$
- (d) There exists $f \in S$ such that $f(x) \neq 0$ for some $x \in [-1, 1]$

33. Define $f:[0,1] \to [0,1]$ by

$$f(x) = \begin{cases} 1 & \text{if } x = 0\\ \frac{1}{n} & \text{if } x = \frac{m}{n} \text{ for some } m, n \in \mathbb{N} \text{ with } m \le n \text{ and } \gcd(m, n) = 1\\ 0 & \text{if } x \in [0, 1] \text{ is irractional} \end{cases}$$

and define $g:[0,1] \to [0,1]$ by $g(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x \in (0,1] \end{cases}$

Then which of the following is/are True?

- (a) f is Riemann integrable on [0, 1]
- (b) g is Riemann integrable on [0, 1]
- (c) The composite function $f \circ g$ is Riemann integrable on [0, 1]
- (d) The composite function $g \circ f$ is Riemann integrable on [0, 1]
- **34.** Let S be the set of all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying

 $|f(x)-f(y)|^2 \le |x-y|^3$ for all $x, y \in \mathbb{R}$.

Then which of the following is/are True?

- (a) Every function in S is differentiable
- (b) There exists a function $f \in S$ such that f is twice differentiable, but f is not thwice differentiable
- (c) There exists a function $f \in S$ such that f is twice differentiable, but f is not thrice differentiable
- (d) Every function in S is infinitely differentiable
- 35. The real valued function y(x) defined on \mathbb{R} is said to be periodic if there exists a real number T >0 such that

y(x+T) = y(x) for all $x \in \mathbb{R}$. Consider the differential equation $\frac{d^2y}{dx^2} + 4y = \sin(ax), x \in \mathbb{R}$, (*)

where $a \in \mathbb{R}$ is a constant. Then Which of the following is /are true?

- (a) All solutions of (*) are periodic for every choice of a.
- (b) All solutions of (*) are periodic for every choice of $a \in \mathbb{R} \{-2, 2\}$.
- (c) All solutions of (*) are periodic for every choice of $a \in \mathbb{Q} \{-2, 2\}$
- (d) $a \in \mathbb{R} \mathbb{Q}$ Then there is a unique periodic solution of (*)
- **36.** Let *M* be a positive real number and let $u, v : \mathbb{R}^2 \to \mathbb{R}$ be continuous functions satisfying

$$\sqrt{u(x,y)^2 + v(x,y)^2} \ge M\sqrt{x^2 + y^2}$$
 for all $(x,y) \in \mathbb{R}^2$. Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be given by

F(x, y) = (u(x, y), v(x, y)) for $(x, y) \in \mathbb{R}^2$. Then of the following is/ are true?

- (a) *F* is injective
- (b) If K is open \mathbb{R}^2 , then F(K) is open in \mathbb{R}^2 .
- (c) If K is closed in \mathbb{R}^2 , then F(K) is closed in \mathbb{R}^2 .
- (d) If E is closed and bounded in \mathbb{R}^2 , then $F^{-1}(E)$ is closed and bounded in \mathbb{R}^2 .

8

37. Let G be a finite group of order at least two and let e denote the identity element of G. Let $\sigma: G \to G$ be a bijective group homomorphism that satisfies the following two condition

(i) if $\sigma(g) = g$ for some $g \in G$, then g = e

(ii) if $(\sigma \circ \sigma)(g) = g$ for all $g \in G$

then which of the following is/are correct?

- (a) For each $g \in G$, there $h \in G$ such that $h^{-1}\sigma(h) = g$
- (b) There exists $x \in G$ such that $x\sigma(x) \neq e$
- (c) The map σ satisfies $\sigma(x) = x^{-1}$ for every $x \in G$
- (d) The order of the group G is an odd number

38. Let (x_n) be a sequence of real numbers. Consider the set $P = \{n \in \mathbb{N} : x_n > x_m \text{ for all } m \in \mathbb{N} \text{ with } m > n\}$. Then which of the following is/are True ?

- (a) If P is finite, then (x_n) has a monotonically increasing subsequence.
- (b) If P is finite, then no subsequence of (x_n) is monotonically increasing.
- (c) If P is infinite, then (x_n) has a monotonically decreasing subsequence.
- (d) If P is infinite, then no subsequence of (x_n) is monotonically decreasing.
- **39.** Let V be the real vector space consisting of all polynomials in one variable with real coefficients and having degree at most 5, together with the zero polynomial. Let $T: V \to \mathbb{R}$ be the linear map defined by T(1) = 1 and

T(x(x-1)...(x-k+1)) = 1 for $1 \le k \le 5$.

Then which of the following is/are True?

(a)
$$T(x^4) = 15$$
 (b) $T(x^3) = 5$ (c) $T(x^4) = 14$ (d) $T(x^3) = 3$

40. Let *P* be a fixed 3×3 matrix with entries in \mathbb{R} . which of the following maps from $M_3(\mathbb{R})$ to $M_3(\mathbb{R})$ is/are linear ?

(a)
$$T_1: M_3(\mathbb{R}) \to M_3(\mathbb{R})$$
 given by $T_1(M) = MP - PM$ for $M \in M_3(\mathbb{R})$

- (b) $T_2: M_3(\mathbb{R}) \to M_3(\mathbb{R})$ given by $T_2(M) = M^2 P P^2 M$ for $M \in M_3(\mathbb{R})$
- (c) $T_3: M_3(\mathbb{R}) \to M_3(\mathbb{R})$ given by $T_3(M) = MP^2 + P^2M$ for $M \in M_3(\mathbb{R})$
- (d) $T_4: M_3(\mathbb{R}) \to M_3(\mathbb{R})$ given by $T_4(M) = MP^2 PM^2$ for $M \in M_3(\mathbb{R})$

SECTION-C

41. The value of the limit

$$\lim_{n \to \infty} \left(\frac{\left(1^4 + 2^4 + \dots + n^4\right)}{n^5} + \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt{4n}} \right) \right)$$
 is equal to _____ (Rounded off to two

decimal places)

- 42. Consider the function $u: \mathbb{R}^2 \to \mathbb{R}$ given by $u = (x_1, x_2, x_3) = x_1 x_2^4 x_3^2 x_1^3 x_3^4 26x_1^2 x_2^2 x_3^3$. Let $c \in \mathbb{R}$ and
 - $k \in \mathbb{N}$ be such that $x_1 \frac{\partial u}{\partial x_2} + 2x_2 \frac{\partial u}{\partial x_3}$ evaluated at the point (t, t^2, t^3) , equals ct^k for every $t \in \mathbb{R}$.

Then the vlaue of k is equal to _____

43. Let y(x) be the solution of the differential equation $\frac{dy}{dx} + 3x^2y = x^2$, for $x \in \mathbb{R}$ satisfying the initial condition y(0) = 4.

Then $\lim_{x\to\infty} y(x)$ is equal to _____ (Rounded off to two decimal places)

- 44. The sum of the series $\sum_{n=1}^{\infty} \frac{1}{(4n-3)(4n+1)}$ is equal to _____(Rounded off to two decimal places)
- **45.** The number of distinct subgroups of \mathbb{Z}_{999} is _____]
- **46.** The number of elements of order 12 in the symmetric group S_7 is equal to _____

47. Let y(x) be the solution of the differential equation $xy^2y' + y^3 = \frac{\sin x}{x}$ for x > 0 satisfying $y\left(\frac{\pi}{2}\right) = 0$

Then the value of $\mathcal{Y}\left(\frac{5\pi}{2}\right)$ is equal to _____(Rounded off to two decimal places)

- **48.** Consider the region $G = \{(x, y, z) \in \mathbb{R}^3 : 0 < z < x^2 y^2, x^2 + y^2 < 1\}$. Then the volume of G is equal to _____(Rounded off to two decimal places)
- **49.** Given that y(x) is a solution of the differential equation $x^2y'' + xy' 4y = x^2$ on the interval $(0, \infty)$ such that $\lim_{x \to 0^+} y(x)$ exists and y(1) = 1. The value of y'(1) is equal to _____(Rounded off to two decimal places)
- **50.** Consider the family F_1 of curves lying in the region $\{(x, y) \in \mathbb{R}^2 : y > 0 \text{ and } 0 < x < \pi\}$ and given by

$$y = \frac{c(1 - \cos x)}{\sin x}$$
, where c is positive real number.

Let F_2 be the family of orthogonal trajectories to F_1 . Consider the curve *C* belonging to the family F_2 passing through the point $\left(\frac{\pi}{3}, 1\right)$. If *a* is real number such that $\left(\frac{4\pi}{4}, a\right)$ lies on *c* then the value of a^4 is equal to ______ (Rounded off to two decimal places)

9

51. For $t \in \mathbb{R}$, let [t] denote the greatest integer less than or equal to t. Let $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 4\}$. Let $f : D \to \mathbb{R}$ and $g : D \to \mathbb{R}$ be defined by f(0, 0) = g(0, 0)and $f(x,y) = \left[x^{2} + y^{2}\right] \frac{x^{2}y^{2}}{x^{4} + v^{4}}, g(x,y) = \left[y^{2}\right] \frac{xy}{x^{2} + v^{2}}$ for $(x, y) \neq (0, 0)$. Let E be the set of point of D at which both f and g are discontinuous. The number of elements in the set E is If G is the region in \mathbb{R}^2 given by $G = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1, \frac{x}{\sqrt{3}} < y < \sqrt{3x}, x > 0, y > 0 \right\}$ then the 52. vlaue of $\frac{200}{\pi} \iint_{C} x^2 dx dy$ is equal to _____(Rounded off to two decimal places) Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}$ and A^T denote the transpose of A. Let $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ and $v = \begin{pmatrix} v_1 \\ v_2 \\ v \end{pmatrix}$ be coloum vectors with 53. entries in \mathbb{R} such that $u_1^2 + u_2^2 = 1$ and $v_1^2 + v_2^2 + v_3^2 = 1$. Suppose $Au = \sqrt{2}v$ and $A^T v = \sqrt{2}u$ Then $|u_1 + 2\sqrt{2}v_1|$ is equal to _____ (Rounded off to two decimal places) Let $f:[0,\pi] \to \mathbb{R}$ be the function defined by 54. $f(x) = \begin{cases} (x - \pi)e^{\sin x} & \text{if } 0 \le x \le \frac{\pi}{2} \\ xe^{\sin x} + \frac{4}{\pi} & \text{if } \frac{\pi}{2} < x \le \pi \end{cases} \text{ if } \frac{\pi}{2} < x \le \pi \end{cases}$

then the value of $\int_{0}^{\pi} f(x) dx$ is equal to _____ (Rounded off to two decimal places)

55. Let *r* be the radius of convergence of the power series

$$\frac{1}{3} + \frac{x}{5} + \frac{x^2}{3^2} + \frac{x^3}{5^2} + \frac{x^4}{3^3} + \frac{x^5}{5^3} + \frac{x^6}{3^4} + \frac{x^7}{5^4} + \dots$$

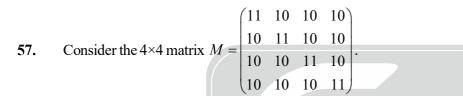
10

Then the value of r^2 equal to _____(Rounded off to two decimal places)

CAREER ENDEAVOUR

56. Define
$$f : \mathbb{R}^2 \to \mathbb{R}$$
 by $f(x, y) = x^2 + 2y^2 - x$ for $(x, y) \in \mathbb{R}^2$
Let $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ and $E = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{9} \le 1\}$
Consider the sets
 $D_{\max} = \{(a, b) \in D: f \text{ has absolute maximum on D at } (a, b)\}$
 $D_{\min} = \{(a, b) \in D: f \text{ has absolute minimum on D at } (a, b)\}$
 $E_{\max} = \{(c, d) \in E: f \text{ has absolute maximum on E at } (c, d)\}$
 $E_{\min} = \{(c, d) \in E: f \text{ has absolute minimum on E at } (c, d)\}$
Then the total number of elements in the set $D_{\max} + P_{\max} + F_{\max} + F_{$

Then the total number of elements in the set $D_{\max} \cup D_{\min} \cup E_{\max} \cup E_{\min}$ is equal to ______



Then the value of the determinant of *M* is equal to

58. Let σ be the permutation in the symmetric group S_5 given by

$$\sigma(1) = 2, \ \sigma(2) = 3, \ \sigma(3) = 1, \ \sigma(4) = 5, \ \sigma(5) = 4$$
. Define $N(\sigma) = \{\tau \in S_5 : \sigma \circ \tau = \tau \circ \sigma\}$.
then the number of elements in $N(\sigma)$ is equal to_____

59. Let $f:(-1,1) \to \mathbb{R}$ and $g:(-1,1) \to \mathbb{R}$ be thrice continuously differentiable functions such that

 $f(x) \neq g(x)$ for every nozero $x \in (-1,1)$. Suppose $f(0) = \ln 2$, $f'(0) = \pi$, $f''(0) = \pi^2$ and $f'''(0) = \pi^9$ and $g(0) = \ln 2$, $g'(0) = \pi$, $g''(0) = \pi^2$ and $g'''(0) = \pi^3$. $a^{f(x)} = a^{g(x)}$

Then the value of the limit $\lim_{x\to 0} \frac{e^{f(x)} - e^{g(x)}}{f(x) - g(x)}$ is equal to _____(Rounded off to two decimal places)

60. If $f:[0,\infty) \to \mathbb{R}$ and $g:[0,\infty) \to \mathbb{R}$ are continuous function such that $\int_{0}^{x^{3}+x^{2}} f(t) dt = x^{2}$ and

 $\int_{0}^{g(x)} t^{2} dt = 9(x+1)^{3} \text{ for all } x \in [0,\infty) \text{, then the value of } f(2) + g(2) + 16f(12) \text{ is equal to} \text{(Rounded off to two decimal places)}$

**** END****