Definition : (Set) : A set is a well defined collection of distinct objects. These objects are called elements of the set. A set is denoted by capital letters.

Example : The collection of rivers of India. The collection of natural numbers. The collection of vowels in the english alphabet. The collection of positive divisior of 42.

There are two forms of sets

- (i) Roster form (Tabular form)
- (ii) Set-builder form

Roster Form (Tabular Form) :In this form, we write every element of a set in a curley braces seperated by commas. Elements are not repeated and order of the elements does not matter.

For example, The collection of letters of the word "MATHEMATICS" = {M, A, T, H, E, I, C, S}

Set-builder form : In this form, all the elements of the set are denoted by a single letter (like x, y, z etc) followed by semi colon and then we write the characteristic property of the elements of the set.

For example, The collection of even integers = $\{x : x \text{ is an even integer}\}$

Example 1: Write the following sets in the roster form.

(i) $A = \{x | x \text{ is a positive integer less then } 10 \text{ and } 2^x - 1 \text{ is an odd number} \}$

(ii) **B** = { $x | x \text{ is real number and } x^2 + 7x - 8 = 0$ }

Solution :

(i)
$$2^1 - 1 = 1, 2^2 - 1 = 3, 2^3 - 1 = 7$$

 $2^4 - 1 = 15$, $2^5 - 1 = 31$, $2^6 - 1 = 63$

$$2^7 - 1 = 127, 2^8 - 1 = 255, 2^9 - 1 = 511$$

Thus, $2^x - 1$ is always an odd number for all positive integer value less than 10.

A = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }
(ii)
$$x^2 + 7x - 8 = 0$$

 $\Rightarrow x^2 + 8x - x - 8 = 0$
 $\Rightarrow x(x+8) - 1(x+8) = 0$
 $\Rightarrow (x-1)(x+8) = 0$
 $\Rightarrow x = 1, -8$
 $B = \{+1, -8\}$

Chapter -1

(d) Singleton set

TYPE OF SETS

2

- (i) The empty set : A set containing no elements is called an empty set. It is denoted by ϕ or $\{\}$.
- (ii) Finite set : A set containing finite number of elements is called finite set.
- (iii) Infinite set : A set which is not finite is called infinite set
- (iv) Singleton set : A set containing only one elements is called a singleton set.
- Ex. The collection of even prime number is/are
 - (a) Empty set (b) Finite set (c) Infinite set
- Soln. Let A = set of even prime number, $A = \{2\}$

A is a singleton set. Hence finite set.

Correct options are (b) and (d)

SUBSETS:

A set X is subset of set Y if every elements of set X is also an element of set Y.

We write $X \subseteq Y$ if $x \in X \Longrightarrow x \in Y$

Number system:

 $\mathbb{N} = \text{set of Natural Number} = \{1, 2, 3, 4, \dots\}$

- \mathbb{Z} = set of Integers = {0, ±1, ±2, ±3,}
- $\mathbb{Q} = \text{set of Rational number} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$

 $= \{x : x \text{ has terminating or non terminating repeating decimal expansion}\}$

 $\mathbb{T} = \mathbb{O}' =$ set of irrational number

 $= \{x : x \text{ is not a rational number}\}$

 $= \{x : x \text{ has non terminating non repeating decimal expansion} \}$

We observe that,

$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \text{ and } \mathbb{Q}' \subseteq \mathbb{R} \text{ ENDEAVOUR EQUAL SETS :}$

Two or more sets are said to be equal if they have exactly same element.

 $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$

Let A = Collection of letters of the word "MATHEMATICS" Ex.

B = Collection of letters of the word "MATHS"

Then

(d) $A \neq B$ (a) A = B(b) $A \subset B$ (c) $B \subseteq A$

Soln. $A = \{M, A, T, H, E, I, C, S\}$ $B = \{M, A, T, H, S\}$ Every element of set B is in set A. $B \subseteq A$ and $A \neq B$ Correct options are (c) and (d)

Chapter-1

Intervals : Let $a, b \in \mathbb{R}$ and a < b. Then

 $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ $[a,b) = \{x \in \mathbb{R} : a \le x < b\}$ $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$

 $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$

POWER SET :

The collection of all subsets of a set A is called the power set of A. It is denoted by P(A). If A has *n* elements then P(A) has 2^n elements.

Ex. If $A = \{\phi, 1\}$, then P(A) is

(a) $\{\phi,1\}$ (b) $\{\phi,\{1\}\}$ (c) $\{\phi,\{1\},\{\phi\}\}$ (d) $\{\phi,\{\phi\},\{1\},\{\phi,1\}\}$

Soln. A has 2 elements then P(A) has 4 elements, A has 4 subsets that are ϕ , { ϕ }, {1}, { ϕ , 1}

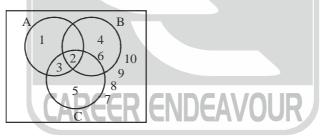
 $P(A) = \{\phi, \{\phi\}, \{1\}, \{\phi, 1\}\}$

Correct option is (d) UNIVERSAL SET :

For some given sets, A set which contains all the elements of given sets is called universal set. It is denoted by U.

Venn diagrams : Venn diagrams are the diagrams which represents the relationship between sets. It is visual representation of sets in which rectangle represents universal sets and circle represents subsets of universal sets.

Example : $A = \{1, 2, 3\}, B = \{2, 4, 6\}, C = \{2, 3, 5\}, U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$



Operation on sets

(1) Union of sets :

 $A \cup B = \{x : x \in A \text{ or } x \in B\}$

That is, $x \in A \cup B \Leftrightarrow x \in A$ or $x \in B$

Properties of Union :

- (i) $A \cup B = B \cup A$
- (ii) $(A \cup B) \cup C = A \cup (B \cup C)$
- (iii) $A \cup \phi = \phi \cup A = A$
- (iv) $A \cup A = A$
- (v) $U \cup A = A \cup U = U$

(iv) $A \subseteq B$ then $A \cup B = A$

4

(2) Intersection of sets: Let A and B are two sets, then intersection of sets is defined as

 $A \cap B = \{x : x \in A \text{ and } x \in B\}$

i.e., $x \in A \cap B \Leftrightarrow x \in A$ and $x \in B$

Properties of intersection:

- (i) $A \cap B = B \cap A$
- (ii) $(A \cap B) \cap C = A \cap (B \cap C)$
- (iii) $\phi \cap A = A \cap \phi = \phi$
- (iv) $U \cap A = A \cap U = A$ (where U is universal set)
- (v) $A \cap A = A$
- (vi) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- (vii) $A \cup (B \cap C) = (A \cup B) \cap (B \cup C)$
- (viii) $A \subseteq B$ then $A \cap B = A$
- **Disjoint (Mutually Exclusive) sets :** Two sets are disjoint if $A \cap B = \phi$
- (3) Difference of sets : Let A and B are two sets, then difference of sets is defined as

$$A \cap B^{C} = A - B = \{x : x \in A \text{ and } x \notin B\} \text{ and } B \cap A^{C} = B - A = \{x : x \in B \text{ and } x \notin A\}.$$

(4) Complement of a set: Let U be universal set and A is subset of U. Then

 $A' = A^C = U - A = \{x \in U : x \notin A\}$

Properties of complement :

- (i) $A \cup A' = U$
- (ii) $A \cap A' = \phi$
- (iv) $(A \cap B)' = A' \cup B'$
- $(\mathbf{v}) \quad (A')' = A$
- (vi) $U' = \phi$
- (vii) $\phi' = U$

Application of operations : If A, B, C are finite sets. Then

(iii) $(A \cup B)' = A' \cap B'$ REER ENDEAVOL

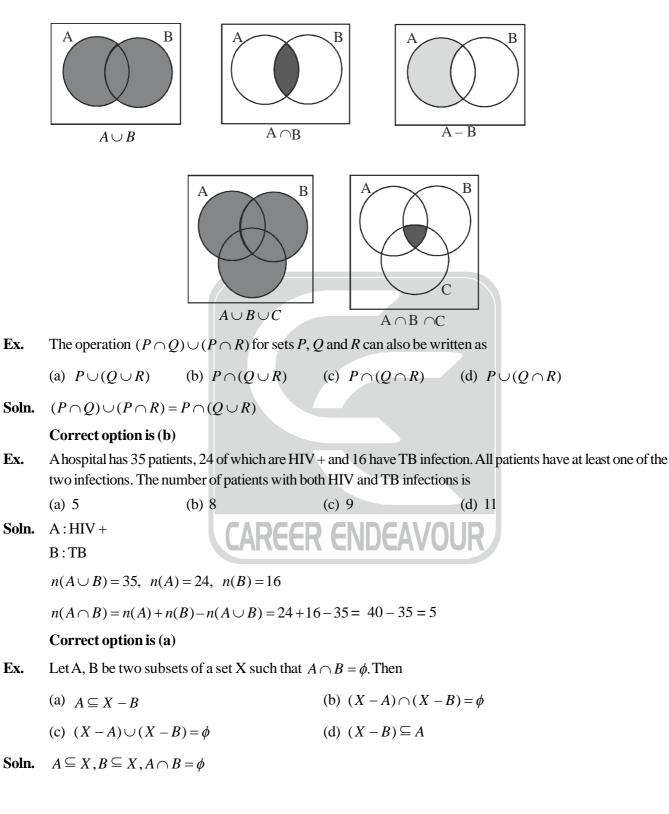
(a)
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

- (b) $n(A-B) = n(A) n(A \cap B)$
- (c) $n(B-A) = n(B) n(A \cap B)$
- (d) n(A') = n(U) n(A)

(e) $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$

(f) If $A \cap B = \phi$ then $n(A \cup B) = n(A) + n(B)$

Venn-diagrams : If A, B, C are finite sets then



5

Sets, Relation, Function Chapter -1 6 $\Rightarrow A \subseteq X - B$ but $X - B \not\subseteq A$ Х В Also, $(X - A) \cap (X - B) \neq \phi$ Also, $(X - A) \cup (X - B) = X \neq \phi$ Correct option is (a) Ex. In a survey, 96 people liked straw berries, 98 liked raspberries and 120 liked blue berries, 18 people liked only strawberries, 20 liked only respberries and 24 liked only blueberries, 38 people liked all the three. How many people liked raspberries and blueberries but not strawberries? (a) 29 (b) 30 (c) 31 (d) 32 **Soln.** a = 18, c = 20, g = 24, e = 38a + b + e + f = 96....(i) b + c + d + e = 98....(ii) S d + e + f + g = 120(iii) b a equation (iii) $\Rightarrow d + f = 120 - 62 = 58$(iv) equation (ii) $\Rightarrow b + d = 98 - 58 = 40$(v) equation (i) $\Rightarrow b + f = 96 - 56 = 40$(vi) h equation (iv) + (v) + (vi)2(d+f+b) = 138 $\Rightarrow d + f + b = 69$(vii) $\Rightarrow d + 40 = 69$ $\Rightarrow d = 29$ **Correct answer is (29)** Ex. Let \mathbb{R} be the set of real numbers. Consider the set $P = \{x \in \mathbb{R} : (x-1)(x^2+1) = 0\}, Q = \{x \in \mathbb{R} : x^2 - 9x + 2 = 0\}$ and $S = \{x \in \mathbb{R} : x = 5y \text{ for some } y \in \mathbb{R}\}$. Then $(P \cap S) \cup Q$ contains (a) Exactly two elements (b) Exactly three elements (c) Exactly four elements (d) infinitely many elements $(x-1)(x^2+1) = 0$ Soln. $\Rightarrow x = 1$ (since $x \in \mathbb{R}$) $x^{2} - 9x + 2 = 0 \implies x = \frac{9 \pm \sqrt{81 - 8}}{2} = \frac{9 \pm \sqrt{73}}{2}$ $P = \{1\}, Q = \left\{\frac{9 + \sqrt{73}}{2}, \frac{9 - \sqrt{73}}{2}\right\}, S = \mathbb{R}$ $P \cap S = \{1\}$ $(P \cap S) \cup Q = \left\{ 1, \frac{9 + \sqrt{73}}{2}, \frac{9 - \sqrt{73}}{2} \right\}$ $(P \cap S) \cup Q$ has three elements Correct option is (b)

	Chap	ter-1	7	Sets, Relation, Function 7		
Ex.	If P = {1, 2, -1, 3}, Q = {0, 4, 1, 3} and R = {1, 6, 7} then $P \cap (Q \cup R)$ is					
	(a) {1,2}	(b) {1,3}	(c) {2, 1}	(d) $\{2,3\}$		
Soln.	$Q \cup R = \{0, 1, 3, 4, 7, 6\}$					
	$P \cap (Q \cup R) = \{1,3\}$					
	Correct option is (b)					
Ex.	In a group of 50 persons, 14 drink tea but not coffee and 30 drink tea. How many persons drink tea and coffee both					
	(a) 30	(b) 36	(c) 16	(d) 20		
Soln.	n(T-C) = 14, n(T) = 3	30				
	$\Rightarrow n(T) - n(T \cap C) = 14$					
	$\Rightarrow 30 - n(T \cap C) = 14$					
	$\Rightarrow n(T \cap C) = 16$					
	Correct option is (c)					
Ex.	In a class of 50 students, 10 study Biology, 30 Chemistry and 25 physics. 11 students study both physics and chemistry, 9 students study Biology and Chemistry and 7 students study Biology and physics. The number of students who study all the three subjects is (a) 1 (b) 2 (c) 3 (d) 4					
Soln.	n(B) = 11, n(C) = 30, r					
	$n(B \cup C \cup P) = 50$					
	$n(P \cap C) = 11, n(B \cap C) = 9, n(B \cap P) = 7$					
	We have $(A + A + C) = 3, (A + A + C) = 3$					
	$n(B \cup C \cup P) = n(B) + n(C) + n(P) - n(B \cap C) - n(C \cap P) - P(B \cap P) + P(B \cap C \cap P)$					
	$\Rightarrow 50 = 10 + 30 + 25 - 11 - 9 - 7 + n(B \cap C \cap P)$					
	$\Rightarrow n(B \cap C \cap P) = -$			VALID		
	Correct option is (d)			WOON .		
Ex.	In a survey of 25 owners of dogs and cat, 20 owned dogs and 10 owned cats. The number of people who owned both dogs and cats was					
Soln.	$n(C \cup D) = 25$					
	n(D) = 20, n(C) = 10					
	$n(C \cap D) = n(D) + n(C)$	$C) - n(C \cup D) = 20 +$	10 - 25 = 5			
	Correct answer is (5)					
	Cartesion Product of sets: Let A and B are two sets, then cartesion Product of sets is defined as					
	$A \times B = \{(x, y) : x \in A \text{ and } y \in B\} \& B \times A = \{(y, x) : y \in B \text{ and } x \in A\}.$					

Also, $A \times A = \{(x, y) : x, y \in A\}$ & $B \times B = \{(x, y) : x, y \in B\}$.

Similarly, $A \times B \times C = \{(a, b, c) : a \in A, b \in B, c \in C\}.$

Remarks: (i) $(x, y) = (u, v) \Leftrightarrow x = u$ and y = v

(ii) $n(A \times B) = n(A).n(B)$

(iii) $n(A \times B) = n(B \times A)$ but $A \times B \neq B \times A$

RELATION:

Any subset of the cartesion product $A \times B$ is called a relation form a non-empty set A to a non-empty set B.

i.e., $R: A \rightarrow B$ is a relation if $R \subseteq A \times B$.

- (a) The set of all first-elements and second element are called Domain and Range of relation R respectively.
- (b) Set B is called Co-domain of relation R and Range \subseteq Co-Domain

(c) If n(A) = p and n(B) = q then $n(A \times B) = pq$ and number of relation from set A to set B is 2^{pq} .

Remark: A relation can be represented by roster form or set-builder form or by arrow diagram.

Ex. Let A = {1, 2, 3, 4, 5}, B = {3, 4, 5, 6, 7,8, 9, 10} and *R* be relation from set *A* to set *B* defined by $R = \{(x, y) : y = 2x - 3\}$. Write R in roster form. Write domain, Co-domain and Range of relation. Visualise R on arrow diagram.

Soln. Since $x \in A$ and $y \in B$

y = 2x - 3

 $R = \{(3, 3), (4, 5), (5, 7)\}$ is roster form

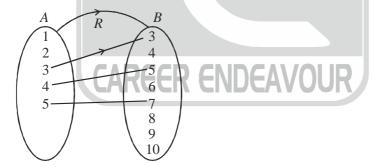
Domain = set of all first element

= {3,4,5} \subseteq *A*

Range = set of all second element

 $= \{3, 5, 7\} \subseteq B$

Co-Domain = $B = \{3, 4, 5, ..., 10\}$



Relation on a set : A relation on set A is a subset of $A \times A$.

TYPES OF RELATIONS

(i) **Empty relation :** A relation on set *A* in which no element of set *A* is related to any element of set *A*.

i.e. $R = \phi \subseteq A \times A$

(ii) Universal relation : A relation on set A in which every element of set A is related to all elements of set A.

i.e. $R = A \times A \subseteq A \times A$

(iii) Identity relation : A relation on set A in which every element of set A is related to itself only and no element is related to other.

i.e. $R = \{(a, a): a \in A \}$

9

	(iv) Reflexive relation : A relation $R : A \to A$ is reflexive if $(a, a) \in R \forall a \in A$ (v) Symmetric relation : A relation $R : A \to A$ is symmetric if $(a, b) \in R$ then $(b, a) \in R$ for all a, b					
	(vi) Transitive relation: A relation $R : A \to A$ is transitive if $(a,b) \in R, (b,c) \in R$ then $(a,c) \in R \ \forall a,b,c \in A$					
(vii) Equivalence relation : A relation $R: A \rightarrow A$ is equivalence relation if R is reflexive, sy						
	transitive relation.					
	Equivalence classes : An equivalence relation $R : A \rightarrow A$ partition the set A into disjoint subsets, equivalence classes.					
	Collection of equivalence class is called a partition of the set. Union of all equivalence classes gives the whole set A .					
Ex.	The total number of relations on set $A = \{a, b, c\}$ is equal to					
	(a) 2^3 (b) 2^6 (c) 2^9 (d) 2^{12}					
Soln.	$n(A) = 3 \implies n(A \times A) = 9$					
	Total number of subsets of $A \times A = 2^9$					
	Total number of relation on set $A = 2^9$					
	Correct opiton is (c)					
Ex.	In the set of real numbers, the relation 'greater than' is					
	(a) reflexive (b) symmetric (c) transitive (d) None					
Soln.	Let R be a relation on \mathbb{R} .					
	$R:\mathbb{R}\to\mathbb{R}$					
	$\mathbf{R} = \{(a,b): a \text{ is 'greater than'}b\} = \{(a,b): a > b\}$					
	Since $(a,a) \notin R$ because $a > a$ is false for all $a \in \mathbb{R}$					
	If $a > b$ then $b \not> a$.					
	Therefore, <i>R</i> is not symmetric.					
	If $(a,b) \in R, (b,c) \in R$					
	$\Rightarrow a > b, b > c$ $\Rightarrow a > c$ CAREER ENDEAVOUR					
	\Rightarrow $(a,c) \in R$ for all $a,b,c \in R$					
	R is transitive relation					
	Correct option is (c)					
Ex.	A relation <i>R</i> is defined on the set \mathbb{Z} of integers by <i>aRb</i> if and only if $(a + b)$ is an even integer. Then <i>R</i> is					
	(a) reflexive but not transitive (b) Symmetric but not reflexive					
	(c) transitive but not symmetric (d) Equivalence					
Soln.	$R:\mathbb{Z}\to\mathbb{Z}$					
	$R = \{(a,b): a+b \text{ is an even integer}\}$					
	Let $a \in \mathbb{Z} \Rightarrow a + a = 2a$ is even integer					
	$\Rightarrow (a,a) \in R \forall a \in \mathbb{Z}$					

R is reflexive relation.

Let $a, b \in \mathbb{Z}$ and $(a, b) \in R \Rightarrow a + b$ is even integer

 $\Rightarrow b + a$ is even integer

$$\Rightarrow (b,a) \in R \ \forall a,b \in \mathbb{Z}$$

R is symmetric relation

Let $a, b, c \in \mathbb{Z}$ and $(a, b) \in R, (b, c) \in R$

 \Rightarrow *a* + *b* is even integer and *b* + *c* is even integer.

(odd + odd = even or even + even = even)

 $\Rightarrow a + c$ is even integer

 \Rightarrow $(a,c) \in R \quad \forall a,c \in \mathbb{Z} \Rightarrow R$ is transitive relation

 \therefore R is equivalence relation

Correct option is (d)

Ex. Let X and Y be two sets such that X and Y have 10 elements are in common. Then the number of elements common to $X \times Y$ and $Y \times X$ is

(c) 100 (d) 200 (a) 20 (b) 50 **Soln.** $n(X \cap Y) = 10$

 $n\{(X \times Y) \cap (Y \times X)\} = 10 \times 10 = 100$

Correct option is (c)

Ex. Let N be the set of all natural numbers. Consider the relation R on N given by $R = \{(m,n): m-n \text{ is divisible}\}$

- by 2}. Then
- (a) *R* is symmetric and transitive (b) *R* is symmetric but not transitive
- (c) *R* is reflexive and not symmetric
- (d) *R* is reflexive and transitive

Soln. $R:\mathbb{N}\to\mathbb{N}$

 $R = \{(m,n): m - n \text{ is divisible by } 2\}$

Let $m \in \mathbb{N} \Longrightarrow m - m = 0$ is divisible by 2.

 \Rightarrow (*m*,*m*) $\in R \forall m \in \mathbb{N}$

 \Rightarrow R is reflexive relation.

Let $m, n \in \mathbb{N}$ and $(m, n) \in R$

 \Rightarrow *m* – *n* is divisible by 2

 \Rightarrow *n* – *m* is also divisible by 2

 \Rightarrow $(n,m) \in \forall m,n \in \mathbb{N}$

 \Rightarrow *R* is symmetric relation

Let $m, n, r \in \mathbb{N}$ and $(m, n) \in R, (n, r) \in R$

 \Rightarrow *m* – *n* is divisible by 2 and *n* – *r* is divisible by 2

 $\Rightarrow m - r$ is divisible by 2

 \Rightarrow $(m,r) \in R \ \forall m,n,r \in \mathbb{N}$

 \therefore *R* is transitive relation

R is equivalence relation

Correct options are (a) and (d)

FUNCTIONS

Function : A relation from a set *A* to a set *B* is said to be a function if every element of set A has a unique image in set B. Every function is a relation but every relation is not a function.

If n(A) = p, n(B) = q then Total number of relation from A to $B = 2^{pq}$ and Total number of function from A to $B = q^p$ Set A is called domain of f and set B is called co-domain of f. The set $f(A) = \{f(x) : x \in A\}$ is called range of

function f and $f(A) \subseteq B$.

Real function and Real valued function :

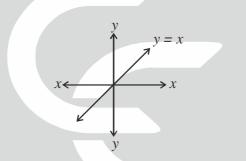
A function which has either \mathbb{R} or a subset of \mathbb{R} as its domain is called real function.

or A function which has either \mathbb{R} or a subset of \mathbb{R} as its range is called a real valued function.

Some specific function

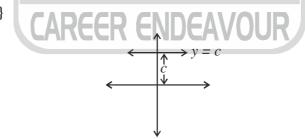
(i) Identity function : The function $f : \mathbb{R} \to \mathbb{R}$ defined by y = f(x) = x is called the identity function Domain

 $=\mathbb{R}$, Range $=\mathbb{R}$.



(ii) Constant function : The function $f : \mathbb{R} \to \mathbb{R}$ defined by y = f(x) = c where *c* is real constant, is called a constant function.

Domain = \mathbb{R} Range = {c}



(iii) Polynomial function: A real valued function $f : \mathbb{R} \to \mathbb{R}$ defined by

 $y = f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ where $n \in \mathbb{N}$ and and $a_0, a_1, a_2, \dots, a_n \in \mathbb{R}$ for each $x \in \mathbb{R}$, is called polynomial functions.

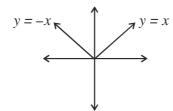
(iv) Rational function : A real function of the type $\frac{f(x)}{g(x)}$ where f(x) and g(x) are polynomial function. Domain = { $x \in \mathbb{R} : g(x) \neq 0$ }

Chapter -1

(v) The Modulus function : A function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = |x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$ called the modulus

function.

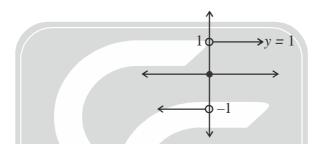
Domain = \mathbb{R} , Range = $[0,\infty)$



(vi) Signum function : The real function $f : \mathbb{R} \to \mathbb{R}$ defined by

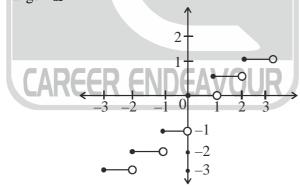
$\int x $	· 0 ∫ 1	if $x > 0$
$f(x) = \begin{cases} \frac{1}{x}, \\ x \end{cases}$	$x \neq 0 = \begin{cases} 0 \\ 0 \end{cases}$	if $x = 0$
$f(x) = \begin{cases} \frac{ x }{x}, \\ 0, \end{cases}$	$x = 0 \left(-1\right)$	if $x < 0$

is called the signum function. Domain = \mathbb{R} , Range = {1, 0, -1}



(vii) Greatest Integer function: The function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = [x] = greatest integer less than or equal to *x*, is called the greatest integer function.

 $Domain = \mathbb{R}$, Range = \mathbb{Z}



(viii) Algebra of real function : Let $f : \mathbb{R} \to \mathbb{R}$, $g : \mathbb{R} \to \mathbb{R}$ then

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(f.g)(x) = f(x).g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

 $(\alpha f)(x) = \alpha f(x)$ where α is constant.

TYPES OF FUNCTION

(i) One - one function (Injective function) : A function $f : A \rightarrow B$ is said to be one-one if distinct elemensts

of set A has distinct images in set B. i.e. If $x_1 \neq x_2$ then $f(x_1) \neq f(x_2) \ \forall x_1, x_2 \in A$

i.e. If
$$f(x_1) = f(x_2) \Longrightarrow x_1 = x_2 \forall x_1, x_2 \in A$$

- (ii) Onto (Surjective) function): A function $f: A \rightarrow B$ is said to be onto if Range(f) = Co Domain(f)
 - i.e. f(A) = B

i.e. for every $y \in B$, there exists an $x \in A$ such that f(x) = y.

(iii) **Bijective function :** A function which is both one-one and onto function is called a bijective function. (iv) **Many one-function :** A function which is not one-one function is called many one function.

(v) Into function : A function which is not onto function is called Into function

Ex. If
$$f(x) = \begin{cases} 3 & \text{when } -3 \le x \le -1 \\ -6x - 3 & \text{when } -1 \le x \le 0 \\ 3x - 3 & \text{when } 0 \le x \le 1 \end{cases}$$

then the values of x for which 2f(x) + 3 = 0 are

(a)
$$\frac{1}{4}, \frac{1}{2}$$
 (b) $\frac{-1}{4}, \frac{1}{2}$ (c) $\frac{1}{4}, \frac{-1}{2}$ (d) $\frac{-1}{4}, \frac{-1}{2}$
Soln. $2f(x) + 3 = 0$
 $\Rightarrow f(x) = \frac{-3}{2}$
when $-1 \le x \le 0$ then $-6x - 3 = \frac{-3}{2}$
 $\Rightarrow -6x = \frac{3}{2}$
 $\Rightarrow x = -\frac{1}{4}$ AREER ENDEAVOUR

when $0 \le x \le 1$ then $3x - 3 = \frac{-3}{2} \implies x = \frac{1}{2}$

Correct option is (b)

Ex. Let
$$1 < x < \infty$$
 and $f(x) = \log\left(\frac{x+1}{x-1}\right)$. Then $f\left(\frac{x^3+3x}{1+3x^2}\right)$ equals

(a)
$$f(x+3)$$
 (b) $f(x^2+3)$ (c) $2f(x)$ (d) $3f(x)$

Soln.
$$f\left(\frac{x^3+3x}{1+3x^2}\right) = \log\left(\frac{\frac{x^3+3x}{1+3x^2}+1}{\frac{x^3+3x}{1+3x^2}-1}\right) = \log\left(\frac{x^3+3x+1+3x^2}{x^3+3x-1-3x^2}\right) = \log\left(\frac{(x+1)^3}{(x-1)^3}\right) = 3\log\left(\frac{x+1}{x-1}\right) = 3f(x)$$

Correct option is (d)

Chapter -1 14 Sets, Relation, Function Ex. The number of functions from the set $\{a, b, c, d\}$ to the set $\{1, 2, 3\}$ is (a) 12 (b) 36 (c) 64 (d) 81 Soln. Let $A = \{a, b, c, d\}, B = \{1, 2, 3\}$ n(A) = 4, n(B) = 3The number of function from A to B = $(n(B))^{n(A)} = 3^4 = 81$ Correct option is (d) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = [x] and $g(x) = \frac{3-2x}{4}$, then Ex. (a) f is one-one and onto (b) g is one-one but f is not one-one (a) f is one-one and g is onto (d) Neither f is onto nor g is one-one Soln. f(1) = [1] = 1f(1.5) = [1.5] = 1Since $1 \neq 1.5$ but f(1) = f(1.5)f is not one-one function Range $(f) = \mathbb{Z}$ and Co-domain of $f = \mathbb{R}$ \Rightarrow Range \neq Co-Domain \therefore f is not onto g(x) is linear polynomial \Rightarrow g(x) is both one-one and onto **Correct option is (b)** The function $f(x) = \sin(x)$ is Ex. (a) one to one and onto from $\left| 0, \frac{\pi}{2} \right|$ to [0,1]. (b) one to one and onto from $[0,\pi]$ to [0,1](c) one to one and onto from $\left[0, \frac{\pi}{2}\right]$ to $\left[0, \frac{\pi}{2}\right]$ (d) one to one and onto form $\left[0, \pi\right]$ to $\left[0, \pi\right]$ **Soln.** (a) $f: \left[0, \frac{\pi}{2}\right] \to [0,1]$ and $f: (x) = \sin(x)$ Distinct elements of $\left[0, \frac{\pi}{2}\right]$ has distinct images and Range = Codomain = [0, 1] Therefore f is both one-one and onto form $\left| 0, \frac{\pi}{2} \right|$ to [0,1] (b) $f:[0,\pi] \to [0,1]$ and $f(x) = \sin(x)$ $f(0) = f(\pi) = 0$ but $0 \neq \pi \implies f$ is not one-one Range = Co-Domain = $[0, 1] \Rightarrow f$ is onto. (c) $f: \left| 0, \frac{\pi}{2} \right| \rightarrow \left| 0, \frac{\pi}{2} \right|$ If $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2) \ \forall x_1, x_2 \in \left[0, \frac{\pi}{2}\right]$

 \therefore f is one-one function. Range = [0, 1] \neq Co-domain

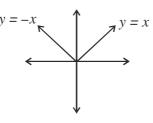
Chapter-1

 \therefore f is not onto. (d) $f:[0,\pi] \rightarrow [0,\pi]$ and $f(x) = \sin(x)$ $f:(0) = f(\pi) = 0$ but $0 \neq \pi \implies f$ is not one-one. Range = $[0,1] \neq$ Co-domain. f is not onto. **Correct option is (a)** Ex. Let $f: \{1, 2, 3, 4, 5\} \rightarrow \{a, b, c, d\}$ be a function. Which of the following statement is true? (a) f can be one-one function (b) f is onto function (c) *f* cannot be one-one function (d) f cannot be onto function Soln. $f: A \rightarrow B$ where $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}$ and finite set and n(A) > n(B)At least 2 elements in A has same image. \Rightarrow f cannot be one-one function **Correct option is (c)** The signum function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \text{ is} \\ -1 & \text{if } x < 0 \end{cases}$ Ex. (a) one-one and onto (b) one-one but not onto (c) onto but not one-one (d) Neither one-one nor onto Soln. f(1) = f(2) but $1 \neq 2$ f is not one-one function Range = $\{1, 0, -1\} \neq Co - Domain$ f is not onto Correct option is (d) Ex. The function $f: [-2,1] \rightarrow [0,4]$ defined by $f(x) = x^2$ (a) surjective but not injective (b) not surjective but injective (c) surjective as well as injective (d) neither surjective nor injective Soln. f(-1) = f(1) but $-1 \neq 1$ *f* is not one-one (injective) Range = f([-2,1]) = [0,4] =Co-Domain, f is onto (surjective). Thus, f is surjective but not injective. Correct option is (a) If f(3) = 15 and f(5) = 45, which of the following could be f(x)? Ex. (d) $2x^2 - 5$ (b) $2x^2 - 2x$ (c) $2x^2 - x$ (a) 4x + 3Soln. $f(x) = 2x^2 - x$ $f(3) = 2(3)^2 - 3 = 18 - 3 = 15$ $f(5) = 2(5)^2 - 5 = 50 - 5 = 45$ Correct option is (c) Ex. Which of the following describes the relationship between A and B as shown in the pairs of numbers in the table below. A 2 3 4 5 *B* 5 10 17 26 (a) B = A + 4(c) B = 3A - 1 (d) $B = A^2 + 1$ (b) B = 2A + 1

Chapter -1 16 Sets, Relation, Function $B = A^2 + 1$ satisfies the table completely. Soln. Correct option is (d) For the function $f: x \to x^2$ with domain $\{x: -3 \le x \le 3\}$, the range is Ex. (a) $\{y: 0 \le x \le 9\}$ (b) The set of all real number (c) $\{y: -9 \le y \le 9\}$ (d) $\{y: y \le 3\}$ Soln. $A = \{x : -3 \le x \le 3\}$ $f(x) = x^2$ $f(A) = \{ y : 0 \le y \le 9 \}$ Correct option is (a) Ex. The two function $y = x^2 - 2$ and y = 4x - 6 intersect at (a) (4, 10) and (4, 10) (4, 10)(b) (c) (2, 2) and (4, 10) (d) (2, 2) **Soln.** $y = x^2 - 2$ & y = 4x - 6Then $x^2 - 2 = 4x - 6$ $\Rightarrow x^2 - 4x + 4 = 0$ $\Rightarrow (x-2)^2 = 0$ $\Rightarrow x = 2$ \Rightarrow y = (2)² - 2 y = 2Intersection point is (2, 2)Correct option is (d) Which one of the following is the correct expression for the function f(x) shown in the figure below ? Ex. **∧** *Y*

(a)
$$f(x) = \frac{1}{x}$$
 (b) $f(x) = |x|$ (c) $f(x) = x^2$ (d) $f(x) = \frac{1}{x^2}$

Soln. $f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$



Correct option is (b)

Ex. What is the output range of the function $y = 1 - e^x$ for input values in the interval $-\infty < x < \infty$? (a) $-\infty < y < \infty$ (b) $0 < y < \infty$ (c) $-\infty < y < 1$ (d) 0 < y < 1

Soln. $e^x > 0 \ \forall x \in \mathbb{R}$

 $\Rightarrow -e^x < 0 \ \forall x \in \mathbb{R}$ $\Rightarrow 1 - e^x < 1 \quad \forall x \in \mathbb{R}$ $\Rightarrow y < 1 \quad \forall x \in \mathbb{R} \Rightarrow -\infty < y < 1 \quad \forall x \in \mathbb{R}$ $\Rightarrow y \in (-\infty, 1)$ **Correct option is (c)** Ex. The total number of mapping from the set $\{1, 2\}$ to the set $\{3, 4, 5, 6, 7\}$ is _____ Soln. $f: A \to B$ $A = \{1, 2\}$ $B = \{3, 4, 5, 6, 7\}$ n(B) = 5n(A) = 2, Number of function $= 5^2 = 25$ **Correct answer is 25** Ex. If P = 10 and Q = 4 then the value of $1 + P - Q(1 - e^{-x})$ when $x = \infty$ is _____. Soln. $1+P-Q(1-e^{-x})$ $=1+10-4(1-e^{-\infty})$ $=11-4\times(1-0)$ =11-4=7**Correct answer is 7** The function $f(x) = x^3 - 1$ has the real roots Ex. (a) -1, 0, 1(b) -1, 1 (c) 0, 1 (d) 1 f(x) = 0 $\Rightarrow x^3 - 1 = 0$ $\Rightarrow x^3 = 1$ $\Rightarrow x=1, \frac{1\pm\sqrt{3}i}{2}$ Soln. is only real root x = 1 \Rightarrow Correct option is (d)

Composition of Function:

Let $f : A \to B$ and $g : B \to C$ be two function. Then the composition of *f* and *g* is denoted by *gof* and defined by *gof* : $A \to C$ and *gof* (x) = $g(f(x)) \forall x \in A$.

(a) If $f: A \to B$ and $g: B \to C$ are one-one onto. Then $gof: A \to C$ is also one-one or onto respectively.

(b) If $f: A \to B$ and $g: B \to C$ are function such that *gof* is one-one then *f* is one-one

(c) If $f: A \to B$ and $g: B \to C$ are function such that *gof* is onto then *g* is onto.

Ex. Let \mathbb{Z} be the set of all integer and *f* and *g* are one-one mapping from \mathbb{Z} to \mathbb{Z} .

If $\begin{cases} f(g(n)) = g(n+1)+1 & \text{for even } n \\ g(f(n)) = f(n-1)-1 & \text{for odd } n \end{cases}$ and f(1) = 3 then

18	Sets, Relation, Function		Chapter -1			
	(a) $g(2) = 0$ (b) $f(3) = 2$	(c) $g(2) = 1$	(d) $f(3) = 1$			
Soln.	Put $n = 1 \Rightarrow g(f(1)) = f(0) - 1 \Rightarrow g(3) = f(0)$	(0) - 1				
	Put $n = 2 \Rightarrow f(g(2)) = g(3) + 1 = f(0) - 1 + 1$	f = f(0)				
	$\Rightarrow f(g(2)) = f(0)$					
	$\Rightarrow g(2) = 0$ because f is one-one.					
Б	Correct option is (a)					
Ex.	If $h = gof$, the composite of two fur	f and g where	ere $f: \mathbb{R} \to \mathbb{R}, f(x) = x + 2x^3$, and			
	$g : \mathbb{R} \to \mathbb{R}, g(x) = 1 + x^2$ then $h(x)$ is equal to					
	(a) $1 + x + x^2 + 2x^3$	(b) $1 + x^2 + 4x^6$				
	(c) $1+7x^2+6x^4+x^6$	(d) $1 + x^2 + 4x^4 + 4x$	6			
Soln.	$f(x) = x + 2x^3, g(x) = 1 + x^2$					
	$h(x) = gof(x) = g(f(x)) = 1 + (f(x))^2$					
	$h(x) = 1 + (x + 2x^3)^2 = 1 + x^2 + 4x^6 + 4x^4$					
	$h(x) = 1 + x^2 + 4x^4 + 4x^6$					
	Correct option is (d)					
Ex.	If $\phi(x) = x^2$ and $\psi(x) = 2^x$ then $\psi(\phi(x))$ is					
	(a) 2^{x^2} (b) x^2	(c) x^{2x}	(d) x^{2x}			
Soln.	$\phi(x) = x^2, \ \psi(x) = 2^x$					
	$\Psi(\phi(x)) = 2^{\phi(x)} = 2^{x^2}$					
	Correct option is (a)					
	INVERTIBLE FUNCTION					
	A function $f: A \to B$ is invertible if there exists another function $g: B \to A$ such					
	that $fog = I_B$ and $gof = I_A$. That is, $fog(x) =$	$x \ \forall x \in B \text{ and } gof(x)$	$= x \forall x \in A$. Then we say "g is inverse"			
	of function <i>f</i> ".					
	(a) A function $f: A \rightarrow B$ is invertible if and on	f is bijective function	on.			
	(b) If $f: A \to B$ and $g: B \to C$ be two invert	ible function then (gof	$(f)^{-1} = f^{-1} o g^{-1}.$			
Ex.	Given $f(x) = x^2 - 1$ then $f^{-1}(x)$ has a domain g	given by				
	(a) $(-1,\infty)$ (b) $[0,\infty)$	(c) $(-\infty,\infty)$	(d) $[-1,\infty)$			
Soln.	Range of $f = B = [-1,\infty)$ because $x^2 - 1 \ge -$	$1 \forall x \in \mathbb{R}$				
	Domain of f^{-1} = Range of $f = [-1,\infty)$					
Ex.	The function f is defined as $f(x) = ax + b$. The function g such that $g(f(x)) = f(g(x)) = x$ is given by					
	(a) $g(x) = \frac{x-b}{a}$ (b) $g(x) = \frac{x-a}{b}$	(c) $g(x) = \frac{x+b}{a}$	(d) $g(x) = \frac{x+a}{b}$			

CAREER ENDEAVOUR

19

Soln. g(f(x)) = f(g(x)) = x $\Rightarrow g(x) = f^{-1}(x)$ So, Let $f^{-1}(x) = t$ $\Rightarrow f(t) = x \Rightarrow at + b = x$ $\Rightarrow t = \frac{x-b}{a} \Rightarrow f^{-1}(x) = \frac{x-b}{a} \Rightarrow g(x) = \frac{x-b}{a}$ Correct option is (a) If $f: \mathbb{R} \to \mathbb{R}$ is a mapping defined by $f(x) = x^2 + 1$ then $f^{-1}(17)$ and $f^{-1}(-3)$ have values respectively are Ex. (b) $\{3, -3\}$ (a) ϕ , {4, -4} (c) ϕ , {3, -3} (d) {4, -4}, ϕ **Soln.** Let $f^{-1}(17) = t \Rightarrow f(t) = 17 \Rightarrow t^2 + 1 = 17 \Rightarrow t^2 = 16 \Rightarrow t = \pm 4$ $f^{-1}(17) = \{4, -4\}$ Again $f^{-1}(-3) = x \implies f(x) = -3 \implies x^2 + 1 = -3 \implies x^2 = -4$ No real x exists $f^{-1}(-3) = \phi$ Correct option is (d) Ex. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be to maps such that *fog* and *gof* are continuous. Then (b) fog = gof(a) f and g are continuous (c) at least one of for g is continuous (d) Neither f nor g may be continuous If fog and gof are continuous then f and g are both continuous. Soln. Correct option is (a) Binary Operation A function $*: A \times A \rightarrow A$ is called a binary operation on set A. We denote by a * b or for $a, b \in A$ i.e., An operation * on set A is called a binary operation if for $a, b \in A \Rightarrow a * b \in A$. **Properties of Binary operation:** (i) **Commutative :** a * b = b * a $\forall a.b \in A$ (ii) Associative : $(a * b) * c = a * (b * c) \forall a, b, c \in A$ (iii) Existence of Identity : There exists $e \in A$ such that $a * e \in a \quad \forall a \in A$. The element e is called identity of * in A. Identity of * (if exists) is unique. (iv) Existence of Inverse : For $a \in A$, there exists $b \in A$ such that a * b = b * a = e where e is identity element of *. The element b is called inverse of a. Inverse of an element (if exists) is unique.

Ex. Consider the binary operations $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $o: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined as a * b = |a - b| and $a \circ b = a$ for all

 $a, b \in \mathbb{R}$. which of the following is not true?

- (a) * is commutative but not associative
- (b) o is associative but not commutative

(c) * is distributive over o

(d) o is distributive over *

a * b = |a - b|Soln. $a \circ b = a$ a * b = b * a because |a - b| = |b - a|* is commutative. $a \circ b = a$ but $b \circ a = b$ $a \circ b \neq b \circ a$ for some $a, b \in \mathbb{R}$ o is not commutative. a * (b * c) = a * |b - c| = |a - |b - c||(a * b) * c = |a - b| * c = ||a - b| - c| $a * (b * c) \neq (a * b) * c$ for some $a, b, c \in \mathbb{R}$ \therefore '*' is not associative $a \circ (b \circ c) = a \circ b = a$ $(a \circ b) \circ c = a \circ c = a$ $a \circ (b \circ c) = (a \circ b) \circ c \quad \forall a, b, c \in \mathbb{R}$ o is associative. $a \circ (b * c) = a \circ (|b - c|) = a$ $(a \circ b) * (a \circ c) = a * a = |a - a| = 0$ o is not distributive over * $a * (b \circ c) = a * b = |a - b|$ $(a * b) \circ (a * c) = |a - b| \circ |a - c| = |a - b|$ * is distributive over o Correct option is (d) Define * on \mathbb{Z} by $a * b = \frac{1}{2} \left[(a+b) + \frac{1}{2} \{ 1 + (-1)^{a+b} \} + 1 \right]$ then * is Ex. (a) not a binary operation on \mathbb{Z} (b) a commutative and associative binary operation on \mathbb{Z} (c) a commutative binary operation on \mathbb{Z} but not associative (d) a binary operation on \mathbb{Z} but neither commutative nor associative

Remark : A binary operation * is distributive over 0 if $a * (b \circ c) = (a * b) \circ (a * c)$

Soln. Define $*on \mathbb{Z}$ by $a *b = \frac{1}{2} \left[(a+b) + \frac{1}{2} \left\{ 1 + (-1)^{a+b} \right\} + 1 \right]$ Let $a, b \in \mathbb{Z}$ Case (i) a + b = even $a *b = \frac{1}{2} \left[(a+b) + 2 \right]$ is also an integer Case (ii) a + b = odd $a *b = \frac{1}{2} \left[(a+b) + 1 \right]$ is also an integer

Chapter-1

Then $a * b \in \mathbb{Z} \ \forall a, b \in \mathbb{Z}$

* is a binary operation.

$$b * a = \frac{1}{2} \left[(b+a) + \frac{1}{2} \left\{ 1 + (-1)^{b+a} \right\} + 1 \right]$$

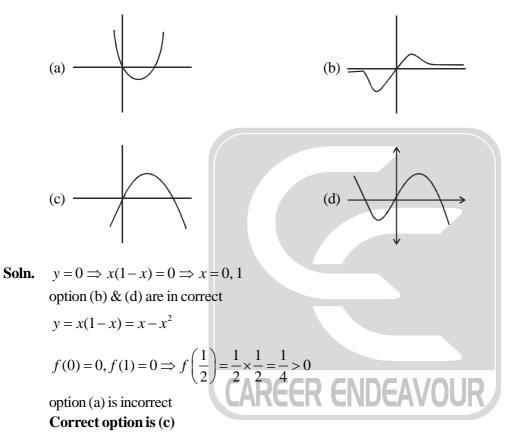
 $a * b = b * a \quad \forall a, b \in \mathbb{Z}$

* is commutative.

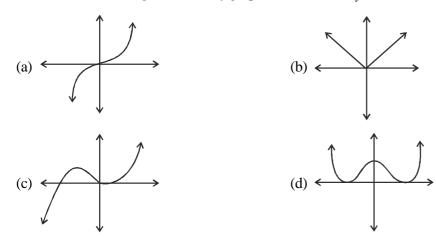
 $(a*b)*c = a*(b*c) \quad \forall a,b,c \in \mathbb{R} * \text{ is associative.}$

Correct option is (b)

Ex. The function y = x(1-x) is best represented by



Ex. Which of the following is most likely graph of the function $y = Ax^2 + Bx^4$ where A > 0, B > 0



Soln. Since $y = Ax^2 + Bx^4 \ge 0 \ \forall x \in \mathbb{R}$

option (a) & (c) are incorrect

option (b) is graph of $y(x) = |x| \Rightarrow$ option (b) is incorrect

 $y(0) = 0 \Rightarrow option(d)$ is incorrect

None of the given options is correct

Infinite sets : A set containing infinite number of elements is called infinite set.

For example : \mathbb{N} , \mathbb{W} , \mathbb{Z} , \mathbb{R} , \mathbb{Q} , \mathbb{Q}' , $\not\subset$ are infinite sets where

- \mathbb{N} = Set of natural numbers.
- $\mathbb{W} =$ Set of whole numbers.
- \mathbb{Z} = Set of Integer numbers.
- \mathbb{Q} = Set of rational numbers.
- $\mathbb{Q}' =$ Set of Irrational numbers.
- \mathbb{R} = Set of real numbers.
- $\not\subset$ = Set of complex numbers.

Infinite set can be catogarised into two parts

- (a) Countably infinite set
- (b) Uncountable set

Countably infinite sets are $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{W}$ uncountable sets are $\mathbb{Q}', \mathbb{R}, \mathbb{C}$

Cardinality of sets : In simple words, cardinality means number of elements present in the set. It is denoted by Card or ||.

Sets with equal cardinality :

Two sets A and B have the same cardinality if there exists a bijection $f : A \rightarrow B$. Then we write |A| = |B|.

For example, \mathbb{N} and \mathbb{Z} have same cardinality because $f: \mathbb{N} \to \mathbb{Z}$ defined by

$$f(n) = \begin{cases} \frac{n}{2} & \text{when } n \text{ is even} \\ -\frac{n-1}{2} & \text{when } n \text{ is odd} \end{cases}$$

is a bijective function.

Remark: The set \mathbb{R} and Q' have same cardinality. In general, all countably infinite sets are of equal cardinality and all uncountable sets have same cardinality.

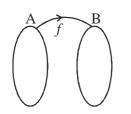
- **Ex.** Let P be the set of all polynomials with rational coefficients. Then
 - (a) P is countable set (b) P is an uncountable set
 - (c) P is a finite set (d) P is the empty set

```
Soln. P = \{a_0 + a_1x + \dots + a_nx^n \mid a_i \in Q \text{ for all } 0 \le i \le n\}
```

Since rational numbers are countable and finite product of countable sets is countable. Therefore, P is countable set

Correct option is (a)

- **Ex.** Which of the following statements about surjective map $f : A \rightarrow B$ is incorrect.
 - (a) If B is uncountable then A is also uncountable (b) If A is infinite then B is also infinite
 - (c) If B is infinite then A cannot be finite (d) Set B may be finite even if A is infinite
- **Soln.** $f: A \rightarrow B$ is onto (surjective)



Every elements of B has at least one preimage in set A.

 \Rightarrow If *B* is uncountable then *A* is uncountable.

 \Rightarrow If *B* is infinite then *A* is also infinite.

Statement of (b) is incorrect, because if is constant function then $A = \mathbb{R}$ but $B = \{k\}$

Correct option is (b)

Ex. If \mathbb{N} is set of natural numbers, \mathbb{Z} is set of integers, \mathbb{Q} is set of rational numbers, \mathbb{R} is set of real numbers and \mathbb{C} is set of complex numbers. There is a bijection between

(a) \mathbb{N} and \mathbb{Z} (b) \mathbb{Z} and \mathbb{R} (c) \mathbb{R} and \mathbb{Q} (c) \mathbb{Q} and \mathbb{C}

Soln. \mathbb{N} and \mathbb{Z} are both countably infinite set \Rightarrow we have a bijection between \mathbb{Z} and \mathbb{N}

Correct option is (a)

Ex. Consider a one-one real valued function f defined on set of real number \mathbb{R} . Suppose a line ℓ parallel to x-axis intersect the graph G_f of f where

(b) finitely man/y points

(d) 9

$$G_f = \{(x, f(x) | x \in \mathbb{R}\} \text{ . Then } G_f \cap \ell \text{ consists of }$$

- (a) infinitely may point
- (c) Exactly two points (d) Exactly one point
- **Soln.** $f : \mathbb{R} \to \mathbb{R}$ is one-one function
 - \Rightarrow distinct elements of X has distinct images.
 - \Rightarrow when we draw a line parallel to x-axis
 - it will intersect graph at exactly one point.

(b) g

Correct option is (d)

Ex. If
$$2x - y = 5$$
, what is the value of $\frac{1}{3}$

(a)
$$3^5$$

[JNU-2018]

Soln. $2x - y = 5 \implies y = 2x - 5$

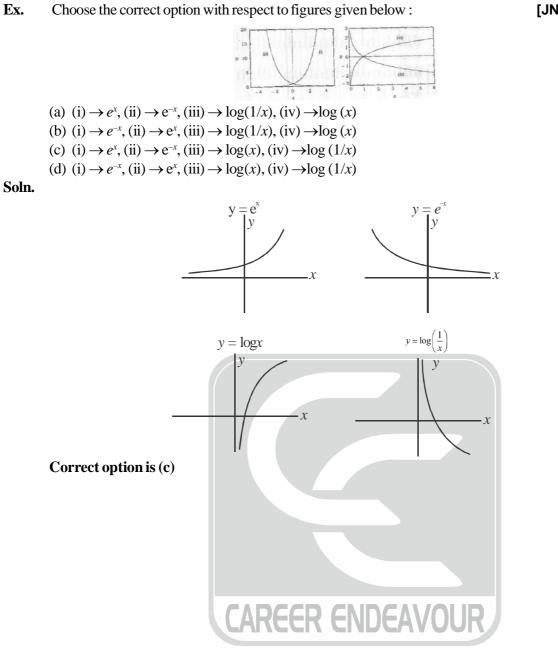
$$\therefore \frac{9^{x}}{3^{y}} = \frac{3^{2x}}{3^{y}} \quad (\therefore y = 2x - 5)$$
$$= \frac{3^{2x}}{3^{2x-5}} = 3^{2x} \cdot 3^{-(2x-5)} = 3^{2x-2x+5} = 3^{5}$$

Correct option is (a)

Ex.	$\operatorname{Given}\log_{10} 100 = \log_{10} 100 = \log_{10} \log$		[JNU-2011]		
	(a) 6.0	(b) 2.3	(c) 1.5	(d) 4.0	
Soln.	$\log_2 64 = \log_2 2^6 = 6\log_2 2 = 6$		$(:: \log_a a = 1)$		
	Correct option is (a)				

24 Sets, Relation, Function Chapter -1
Ex. For the function
$$f: x \to x^3$$
 with domain $x: -3 \le x \le 3$, what is the range ? [JNU-2011]
(a) $\{y: 0 \le y \le 9\}$ (b) The set of all real numbers
(c) $\{y: -9 \le y \le 9\}$ (d) $\{y: y \le 3\}$
Soln.
 $x = \frac{10}{-3} = \frac{9}{10} = \frac{1}{9} (y: 0 \le y \le 9\}$,
Correct option is (a)
Ex. Which of the following expression is /are True ? [JNU-2011]
(E₁); $\frac{x^2 - y^2}{x + y} = x - y$
(E₂): $(\sqrt{a} + \sqrt{b})^2 = a + b$
(a) $E_1 \& E_2$ (b) E_1 only (c) E_2 only
(d) Neither E_1 nor E_2
Soln. $(E_1) \frac{x^2 - y^2}{x + y} = \frac{(x + y)(x + y)}{(x + y)} = (x - y)$
So. E_1 is True
 $(E_2) (\sqrt{a} + \sqrt{b})^2 = (\sqrt{a})^2 + (\sqrt{b})^3 + 2\sqrt{a}\sqrt{b} = a + b + 2\sqrt{ab}$
So, E_1 is True
 $(E_2) (\sqrt{a} + \sqrt{b})^2 = (\sqrt{a})^2 + (\sqrt{b})^3 + 2\sqrt{a}\sqrt{b} = a + b + 2\sqrt{ab}$
So (E_2) is false
Correct option is (b)
Ex. If $\log_2 9 = 2$ (b) $E_1 = (\sqrt{a})^2 + (\sqrt{b})^3 + 2\sqrt{a}\sqrt{b} = a + b + 2\sqrt{ab}$
Soln. $\log_2 9 = 2$ (d) 18 (d) 2
(d) 2
(d) 2
(d) 2
(d) 2
(d) 2
(e) 4.5
Soln. $\log_2 9 = 2$ (f) $(\sqrt{a} + \sqrt{b})^2 + \sqrt{a}\sqrt{a}$ (f) 3 (f) 2
Soln. $\log_2 9 = 2$ (f) $(\sqrt{a} + \sqrt{b})^2 + \sqrt{a}\sqrt{a}$ (f) 3 (f) 2
Correct option is (b)
Ex. If $\log_2 9 = 2$ (f) $(\sqrt{a} + \sqrt{a})^2 + \sqrt{a}\sqrt{a}$ (f) 3 (f) 2
Soln. $\log_2 9 = 2$ (f) $(\sqrt{a} + \sqrt{a})^2 + \sqrt{a}\sqrt{a}$ (f) 3 (f) 2
Correct option is (c)

Chapter-1



[JNU-2015]