

NORMAL SUBGROUP

Normal Subgroup:

Let *G* be a group under multiplication and *H* be any subgroup of *G* and let $x \in G$. Then Hx and xH are respectively the right and left cosets of *H* in *G*.

If *G* is abelian then $Hx = xH \ \forall x \in G$.

But even when *G* is non abelian and yet there exist a subgroup *H* of *G* having the property $Hx = xH \quad \forall x \in G$, then such a subgroup of *G* is called normal subgroup.

A normal subgroup H of a group G is denoted by $H \triangleright G$

Definition: A subgroup *H* of *G* is called normal subgroup of *G* if $xhx^{-1} \in H$ for all $x \in G$ and for all $h \in H$.

Note: For a group G, $\{e\}$ and G are always the normal subgroups of G and these are called trivial normal subgroups of G or improper normal subgroups of G.

Simple Group: If a group G has no proper normal subgroup, then G is called a simple group

Note: Every group of prime order is simple.

Theorem 1: Every subgroup of an abelian group is always normal

Theorem 2: A subgroup *H* of a group *G* is normal if and only if $xHx^{-1} = H$ for all $x \in G$

Theorem 3: A subgroup H of a group G is normal if and only if each left coset of H in G is a right coset of H in G.

Theorem 4: A subgroup H of G is normal if and only if the product of two right cosets of H in G is again a right cosets of H in G.

Theorem5: Intersection of two normal subgroups of a group is also a normal subgroup

Theorem6: Intersection of any collection of normal subgroups is itself a normal subgroup

Theorem7: If *M* and *N* are two normal subgroups of *G* such that, $N \cap M = \{e\}$, then for every $n \in N$ and

 $m \in N$ we have nm = mn.

Theorem 8: Let *H* be a subgroup of *G* and *N* be a normal subgroup of *G*. Then $H \cap N$ is a subgroup of *H*.

Solved Examples

- **1.** If *H* is a subgroup of *G* and *N* is a normal subgroup of *G*, then $H \cap N$ is a normal subgroup of
 - (a) H (b) N (c) H + N (d) G [B.H.U.-2011]

Soln. Let $x \in H \cap N$

 $\Rightarrow x \in H$ and $x \in N$

Let $h \in H \Longrightarrow h \in G$

 $\Rightarrow hxh^{-1} \in H$ (:: *H* is subgroup of *G*)

Also $hxh^{-1} \in N$ (:: *N* is normal subgroup of *G*)

 $\Rightarrow hxh^{-1} \in H \cap N \quad \forall h \in H, \forall x \in H \cap N$

 $H \cap N$ is normal subgroup of H.

Hence correct option is (a)

2. Let *H* be a finite subgroup of a group *G* and let $g \in G$. If $gHg^{-1} = \{ghg^{-1} | h \in H\}$, then **[B.H.U-2018]**

(a) $|gHg^{-1}| = |H|$ (b) $|gHg^{-1}| < |H|$ (d) $|gHg^{-1}| = 1$ (c) $|gHg^{-1}| > |H|$ **Soln.** Define $f: H \to gHg^{-1}$ by $f(h) = ghg^{-1}, h \in H$ Let $h_1, h_2 \in H$ $f(h_1h_2) = gh_1h_2g^{-1} = gh_1g^{-1}gh_2g^{-1} = f(h_1)f(h_2)$ \Rightarrow f is a homomorphism Let $f(h_1) = f(h_2)$ CAREER ENDEAVOUR $\Rightarrow gh_1g^{-1} = gh_2g^{-1}$ $\Rightarrow h_1 = h_2$ \Rightarrow f is one- one Let $x \in gHg^{-1}$ $\Rightarrow x = gh_1g^{-1}$ for some $h_1 \in H$ Now $h_1 \in H$ $\Rightarrow f(h_1) = gh_1g^{-1}$ \Rightarrow f is onto \Rightarrow *f* is one-one and onto $\Rightarrow |gHg^{-1}| = |H|$ Hence correct option is (a)

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

	Normal Subgroup 121
3.	Let G be a finite group and H is a subgroup of G of index 2. Then [H.C.U. 2018]
Soln.	(a) H is normal and $g^2 \in H$ for any $g \in G$ (b) H is normal and $g^2 = e$ (c) H is need not be normal(d) None of the aboveGiven H is a subgroup of G of index 2 e^{-1}
	\Rightarrow <i>H</i> is normal in <i>G</i> and also $(gH)^2 = H \forall g \in G$ (it is normal because every right coset is also a left coset)
	$\Rightarrow (gH)(gH) = H$
	$\Rightarrow g^2 H = H (\because H \text{ is normal in } G)$
	$\Rightarrow g^2 \in H (\because h \in H \Leftrightarrow Hh = H = hH)$
	Hence correct option is (a)
4.	Let $G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \middle a \in \mathbb{Q} - \{0\}, b \in \mathbb{Q} \right\}, U = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle b \in \mathbb{Q} \right\}, D = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \middle a \in \mathbb{Q} - \{0\} \right\}$
	Which of the following statements are true? [H.C.U. 2013]
	(a) G, U, D are all groups under multiplication (b) D is a normal subgroup of G
	(c) U is a normal subgroup of G (d) For every matrix $A \in U$, $ADA^{-1} \subseteq D$
Soln.	Given $G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \middle a \in \mathbb{Q} - \{0\}, b \in \mathbb{Q} \right\}$
	$U = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle b \in \mathbb{Q} \right\}, D = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \middle a \in \mathbb{Q} - \{0\} \right\}$
	We can easily prove that G , U , D are all groups under multiplication.
	Also $U \subseteq G$ and $D \subseteq G$ CAREER ENDEAVOUR
	$\Rightarrow U$ and D are subgroups of G.
	To check that <i>D</i> is normal in <i>G</i> or not : Let $B \in G$ and $C \in D$
	$\Rightarrow B = \begin{pmatrix} a_1 & b_1 \\ 0 & 1 \end{pmatrix} \text{ for some } a_1 \in \mathbb{Q} - \{0\}, b_1 \in \mathbb{Q} \text{ and } C = \begin{pmatrix} a_3 & 0 \\ 0 & 1 \end{pmatrix} \text{ for some } a_3 \in \mathbb{Q} - \{0\}$
	Now $BCB^{-1} = \begin{pmatrix} a_1 & b_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{a_1} & \frac{-b_1}{a_1} \\ 0 & 1 \end{pmatrix}$
	$ = \begin{pmatrix} a_1 & b_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{a_3}{a_1} & \frac{-a_3b_1}{a_1} \\ 0 & 1 \end{pmatrix} $
	South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

$$= \begin{pmatrix} a_3 & -a_3b_1 + b_1 \\ 0 & 1 \end{pmatrix} \notin D$$

 \Rightarrow *D* is not normal in *G*.

To check that U is normal in G or not

Let $B \in G$ and $C \in U$

$$\Rightarrow B = \begin{pmatrix} a_1 & b_1 \\ 0 & 1 \end{pmatrix} \text{ for some } a_1 \in \mathbb{Q} - \{0\}, b_1 \in \mathbb{Q} \text{ and } C = \begin{pmatrix} 1 & b_2 \\ 0 & 1 \end{pmatrix}; b_2 \in \mathbb{Q}$$

$$BCB^{-1} = \begin{pmatrix} a_1 & b_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{a_1} & -\frac{b_1}{a_1} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a_1 & b_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{a_1} & \frac{-b_1}{a_1} + b_2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -b_1 + a_1b_2 + b_1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a_1b_2 \\ 0 & 1 \end{pmatrix}$$

 $\Rightarrow BCB^{-1} \in U$

 \Rightarrow U is normal in G.

Let $A \in U$

$$\Rightarrow A = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}; b \in \mathbb{Q}$$

Now
$$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & -ab \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & -ab+b \\ 0 & 1 \end{pmatrix} \notin D$$

 $\Rightarrow ADA^{-1} \nsubseteq D$

Correct option is (a) and (c)

5. For a group *G*, which of the following statements are true?

- (a) If $x, y \in G$ such that order of x is 3, order of y is 2 then order of xy is 6.
- (b) If every element is of finite order in G then G is a finite group
- (c) If all subgroups are normal in G then G is abelian
- (d) If G is abelian then all subgroups of G are normal

Soln. For option (a)

Take $G = S_3$

Let x = (123) and y = (12)

Clearly o(x) = 3 and o(y) = 2

$$xy = (123)(12) = (1)(23)$$

 $\Rightarrow o(xy) = 2$

```
\Rightarrow Option (a) is incorrect
```

```
For option (b)
```

[H.C.U. 2014]

Let $G = (P(\mathbb{N}), \Delta)$

G is an infinite group in which every element is of finite order.

For option (c)

Let $G = Q_8$

All subgroups of G are normal in G but G is non abelian.

For option (d) :

We know that if G is abelian group then all subgroup of G are normal

Correct option is (d).

- 6. Let $GL_n(\mathbb{R})$ denote the group of all $n \times n$ matrices with real entries (with respect to matrix multiplication) which are invertible. Pick out the normal subgroups from the following: [NBHM-2010]
 - (a) The subgroup of all real orthogonal matrices
 - (b) The subgroup of all invertible diagonal matrices
 - (c) The subgroup of all matrices with determinant equal to unity

Soln. For option (a)

Take n = 2

Let $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

Clearly $A \in GL_2(\mathbb{R})$ is an orthogonal matrix.

Let
$$B = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$

Let
$$BAB^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -1 & -2 \end{bmatrix}$$

Clearly BAB^{-1} is not an orthogonal matrix

 \Rightarrow The subgroup of all real orthogonal matrices does not form a normal subgroup of $GL_n(\mathbb{R})$

For option (b):

Take n = 2

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

Clearly A is an invertible diagonal matrix.

Let
$$B = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \in GL_2(\mathbb{R})$$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

Consider
$$BAB^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 2 \end{bmatrix}$$

 $\Rightarrow BAB^{-1}$ is not a diagonal matrix
 \Rightarrow The subgroup of all invertible diagonal matrices does not form a normal subgroup.
For option (c)
Let $A \in GI_n(\mathbb{R})$ be such that det $(A) = 1$
Let $B = GL_n(\mathbb{R})$
Consider det $(BAB^{-1}) - \det(B)\det(A)\det(B^{-1})$
 $= \det(B)\det(A)\frac{1}{\det(B)} = \det(A) = 1$
Thus the subgroup of all matrices with determinant equal to unity form a normal subgroup of $GL_n(\mathbb{R})$
Hence correct option is (c)
7. Let G be the group of invertible upper triangular matrices in $M_1(\mathbb{R})$. If we write $A \in G$ as $A = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix}$
which of the following define a normal subgroup of G ?
(a) $H = \{A \in G \mid a_1 = 1\}$
(b) $H = \{A \in G \mid a_1 = a_{22} = 1\}$
(c) $H = \{A \in G \mid a_1 = a_{22} = 1\}$
(c) $H = \{A \in G \mid a_1 = a_{22} = 1\}$
For option (a)
Given $G = \left\{ \begin{pmatrix} a_1 & a_{22} \\ 0 & a_{22} \end{pmatrix} : d_{13} \neq M_2(\mathbb{R})(a_1, a_{22} \neq 0) \right\}$
For option (a)
Given $B = A = \left\{ \begin{pmatrix} 1 & a_{12} \\ 0 & a_{22} \end{pmatrix} : d_{13} \neq 0$
Let $B \in G$
Let $A \in H \Rightarrow A = \left\{ \begin{pmatrix} 1 & a_{12} \\ 0 & a_{22} \end{pmatrix} : d_{13} \neq 0$
Consider $BAB^{-1} = \begin{pmatrix} a_1 & a_{12} \\ 0 & a_{22} \end{pmatrix} : \begin{pmatrix} a_{12} & a_{12} \\ 0 & a_{22} \end{pmatrix} = \begin{pmatrix} a_{13} & a_{12} \\ 0 & a_{23} \end{pmatrix} : d_{13} a_{23} \neq 0$
Consider $BAB^{-1} = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{23} \end{pmatrix} \left\{ \begin{pmatrix} a_{12} & a_{12} \\ 0 & a_{23} \end{pmatrix} \right\} = \frac{1}{2} = \frac{1}{2$

7.

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

 a_{12}

$$= \frac{1}{a_{11}a_{22}} \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix} \begin{pmatrix} a_{22} & -a_{12} + a_{11}a_{12}' \\ 0 & a_{11}a_{22}' \end{pmatrix} \in H$$

$$= \frac{1}{a_{11}a_{22}} \begin{pmatrix} a_{11}a_{22} & -a_{12}a_{11} + a_{11}^2a_{12}' + a_{12}a_{11}a_{22}' \\ 0 & a_{11}a_{22}a_{22}' \end{pmatrix} \in H$$

$$\Rightarrow H \text{ is normal in } G$$
For option (b)
Given $H = \{A \in G \mid a_{11} = a_{22}\}$
Let $A \in H \Rightarrow A = \begin{pmatrix} a_{11}' & a_{12}' \\ 0 & a_{11}' \end{pmatrix}; a_{11}' \neq 0$
Let $B \in G$

$$\Rightarrow B = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix}; a_{11}a_{22} \neq 0$$
Consider $BAB^{-1} = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix} \begin{pmatrix} a_{11}' & a_{12}' \\ 0 & a_{22} \end{pmatrix} \begin{pmatrix} a_{11}' & a_{12}' \\ 0 & a_{22} \end{pmatrix} \begin{pmatrix} a_{11}' & a_{12}' \\ 0 & a_{21}' \end{pmatrix} = \frac{1}{a_{11}a_{22}} \begin{pmatrix} a_{11}a_{12} & -a_{11}a_{11}a_{12} + a_{12}'a_{11} \\ 0 & a_{11}a_{11}' \end{pmatrix}$

$$= \frac{1}{a_{11}a_{22}} \begin{pmatrix} a_{11}a_{12} & -a_{11}a_{11}a_{12} + a_{12}'a_{11} \\ 0 & a_{11}a_{11}' a_{22} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}' & \frac{a_{12}}{a_{22}} \\ 0 & a_{21}' \end{pmatrix} \in H$$

$$\Rightarrow H \text{ is normal in } G$$
Similarly we can prove for option (c)
Hence correct option is (a), (b) and (c)
For real numbers a and b , define the mapping $\tau_{-h} : \mathbb{R} \to \mathbb{R}$ by $\tau_{-h}(x) = ax + b$. Let

 $G = \{\tau_{a,b} : a, b \in \mathbb{R}, a \neq 0\}$ CAREER ENDEAVOUR Under composition of mappings, this becomes a group. Which of the following subgroups of *G* are normal?

(a)
$$H = \{\tau_{a,b} \mid a \neq 0, a \in \mathbb{Q}, b \in \mathbb{R}\}$$

- (b) $H = \{\tau_{1,b} \mid b \in \mathbb{R}\}$
- (c) $H = \{\tau_{1,b} \mid b \in \mathbb{Q}\}$
- **Soln.** Given $G = \{\tau_{a,b} : a, b \in \mathbb{R}, a \neq 0\}$

For option (a):

Given $H = \{ \tau_{a,b} \mid a \neq 0, a \in \mathbb{Q}, b \in \mathbb{R} \}$

Let $x \in G \Longrightarrow x = \tau_{a,b}$ for some $a, b \in \mathbb{R}, a \neq 0$

Let $h \in H \Longrightarrow h = \tau_{a',b'}$ for some $a' \in \mathbb{Q}, b' \in \mathbb{R}, a' \neq 0$

Consider $xhx^{-1} = \tau_{(a,b)}\tau_{(a',b')}\tau_{(a,b)}^{-1}$

8.

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

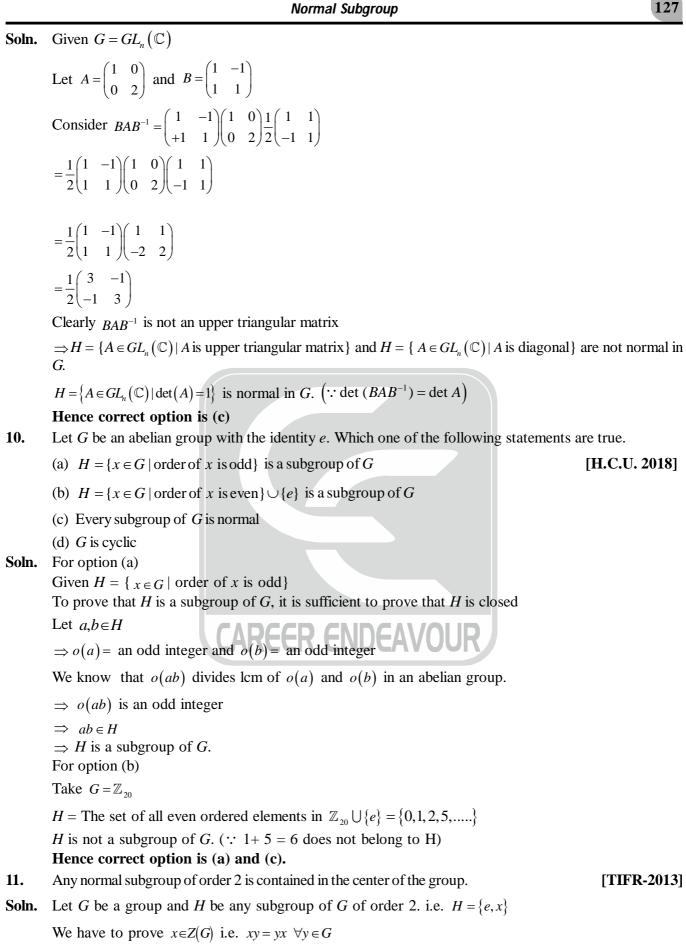
[NBHM-2015]

$$\begin{aligned} \tau_{(a,b)} \tau_{(a',b')} \tau_{(a,b)}^{\dagger}(y) &= \tau_{(a,b)} \left(a' \left(\frac{y}{a} - \frac{b}{a} \right) + b' \right) \\ &= aa' \left(\frac{y}{a} - \frac{b}{a} \right) + ab' + b \\ &= a' (y - b) + ab' + b \\ &= a' y + ab' - a'b + b \\ &= a' y + ab' - a'b + b \\ &= \tau_{(a',ab'-a)b+b}(y) \in H \\ &\Rightarrow H \text{ is normal in } G. \\ &For option (b) \\ & \text{Given } H = \left\{ \tau_{1,b} \mid b \in \mathbb{R} \right\} \\ &\text{Let } x \in G \text{ and } h \in H \\ &\Rightarrow x = \tau_{a,b} \text{ for some } a, b \in \mathbb{R}, \ a \neq 0 \\ &\text{and } h = \tau_{1,b'} \text{ for some } b' \in \mathbb{R} \\ & \text{Consider } \tau_{a,b} \tau_{1,b'} \tau_{\left(\frac{1}{a'},\frac{b'}{a'}\right)}(y) = \tau_{a,b} \tau_{b,b'} \left(\frac{1}{a}, y - \frac{b}{a} \right) \\ &= \tau_{a,b} \left(\frac{1}{a}, y - \frac{b}{a} + b' \right) \\ &= a \left(\frac{1}{a}, y - \frac{b}{a} + b' \right) \\ &= a \left(\frac{1}{a}, y - \frac{b}{a} + b' \right) \\ &= a \left(\frac{1}{a}, y - \frac{b}{a} + b' \right) \\ &= y - b + ab' + b \\ &= \tau_{1,aw'}(y) \\ &\Rightarrow \tau_{1,ab'} \in H \\ &\Rightarrow H \text{ is normal subgroup of } G. \\ & \text{For option (c):} \\ & \text{Given } H = \left\{ \tau_{1,b} \mid b \in \mathbb{Q} \right\} \\ & \text{Let } x \in G \text{ and } h \in H \\ &\Rightarrow x = \tau_{a,b} \text{ for some } a, b \in \mathbb{R}, a \neq 0 \\ & \text{and } h = \tau_{1,b'} \text{ for some } b' \in \mathbb{Q} \\ & \text{Now } \tau_{a,b} \tau_{1,b'} \tau_{\frac{1}{a}, \frac{x}{a}} = \tau_{1,ab'} \\ & \text{If } a \in \mathbb{R} - \mathbb{Q} \text{ the } ab' \neq \mathbb{Q} \\ &\Rightarrow \tau_{1,ab'} \notin H \\ &\Rightarrow H \text{ is normal in } G. \\ & \text{Hence correct option is (a) and (b)} \\ & \text{Let } n \in \mathbb{N}, n \geq 2, \text{ Which of the following subgroups are normal in } GL_n(\mathbb{C})? \end{aligned}$$

[NBHM-2017]

- (a) $H = \{A \in GL_n(\mathbb{C}) \mid A \text{ is upper triangular}\}$
- (b) $H = \{A \in GL_n(\mathbb{C}) \mid A \text{ is diagonal}\}$
- (c) $H = \{A \in GL_n(\mathbb{C}) \mid \det(A) = 1\}$

9.



Let $y \in G$ be any arbitrary element.

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

Since H is normal in G.

 $\Rightarrow yxy^{-1} \in H$ $\Rightarrow \text{Either } yxy^{-1} = e \text{ or } yxy^{-1} = x$ If $yxy^{-1} = e \Rightarrow x = e$ $\Rightarrow yxy^{-1} \neq e$ $\Rightarrow yx y^{-1} = x$ $\Rightarrow yx = xy \forall y \in G$ $\Rightarrow x \in Z(G)$ $\Rightarrow H \subseteq Z(G)$

12. In each of the following, state whether the given set is a normal subgroup or, is a subgroup which is not normal or, is not a subgroup of $GL_{p}(\mathbb{C})$.

- (a) The set of matrices with determinant equal to unity
- (b) The set of invertible upper triangular matrices
- (c) The set of invertible matrices whose trace is zero

Soln. For option (a).

We know that the set of all matrices with determinant equal to unity form a normal subgroup. For option (b):

The set of all invertible upper triangular matrices form a subgroup of $GL_n(\mathbb{C})$ but not a normal subgroup. For option (c)

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} +1 & 0 \\ 0 & -1 \end{pmatrix}$

Clearly A and B are invertible matrices whose trace is zero

Now $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

```
\operatorname{Trace}(AB) = 2 \neq 0
```

 \Rightarrow The set of invertible matrices whose trace is zero does not form a subgroup of G.

- 13. Let A and B be normal subgroups of a group G. Suppose $A \cap B = \{e\}$, where e is the unit element of the group G, then
 - (a) for any $a \in A$ and $b \in B$, ab = ba.
 - (b) for only some $a \in A$ and $b \in B$, ab = ab.
 - (c) $ab \neq ba$ for any $a \in A$ and $b \in B$.
 - (d) $ab \neq ba$ for some $a \in A$ and $b \in B$.

Soln. Since $\forall a \in A, b \in B$

 $(aba^{-1})b^{-1} \in B \& a(bab^{-1}) \in A$ as $A \cap B = \{e\} \Rightarrow aba^{-1}b^{-1} = e$ $\Rightarrow ab = ba \forall a \in A, b \in B$

option (a) is correct

[NBHM-2012]

14. Which of the following is true ?

- (a) \exists two subgroups H,K, which are not normal but HK is a subgroup
- (b) $\not\exists$ two subgroups H,K, which are not normal but HK is a subgroup
- (c) If |H| = 14 and |K| = 33 then $|H \cap K|$ is greater than 1
- (d) A_5 has subgroup of order 15

Soln. Let $G = S_4, H = \{I, (12)\}$

$$K = \{I, (123), (132)\}$$

Hence $HK = \{I, (12), (123), (132), (12)(123), (12)(132)\}$

 $= \{I, (12), (123), (23), (13), (132)\}$

 $KH = \{I, (12), (123), (132), (23), (13)\}$

Thus $HK = KH \Rightarrow HK$ is subgroup

but H and K are not normal subgroup of G

 \therefore option (a) is correct & (b) is false

Since $|H \cap K|$ must divide |H| = 14 and |k| = 33

$$\Rightarrow |H \cap K| = 1$$

 \therefore option (c) is false

If A_5 has subgroup of order 15. Then A_5 must have an element of order 15 as group of order 15, is cycle but A_5 does not have an element of order 15.

 \therefore option (d) is false

Correct option is (a)

15. Let G be a group and H, K be subgroups of G such that $G = H \oplus K$. Let N be a normal subgroup of

G such that $N \cap H = \{e\}$ and $N \cap K = \{e\}$. Then N is (a) abelian (b) Non abelian (c) Cyclic

(d) None of these

Soln. Since $G = H \times K$, *H* and *K* are normal subgroup of *G*.

Now $\forall n \in N$, $h \in H$, $k \in K$, nh = nh and $nk = kn \begin{cases} \text{if } H, k \text{ be normal subgroup of } G \& H \cap K = \{e\} \\ \text{then } hk = kh \forall h \in H \text{ and } k \in K \end{cases}$

Let $a, b \in N$, then $\exists h \in H, k \in K$ such that b = hk.

Now
$$ab = a(hk) = (ah)k = (ha)k = h(ak)$$

= $h(ka) = (hk)a = ba$

 $\Rightarrow ab = ba$

 \Rightarrow N is abelian

: option (a) is correct

- Let G be a group and $H = \{g^2 | g \in G\}$. Then 16.
 - (a) H must be normal subgroup
 - (b) H is sub group but need not to be normal subgroup
 - (c) H is not sub group of G.

...

(d) H may not be subgroup and if it is a subgroup then it must be normal.

Suppose $G = A_4$ contains all twelve even permutation of S_4 which are {I, (12)(34), (13)(24), (14)(23)} Soln. and the 8 3-cycles elements. Since $I^2 = I$, ((*ab*) (*cd*)² = I and square of any 3-cycle is a 3-cycle, we notice H will contains I and 8-3 element cycles so that o(H) = 9 and $9 \mid 12$. So H can not be subgroup of G. Option (a), (b) are false

Suppose now H is subgroup then if $h \in H$, $g \in G$ be any elements, then

$$g^{-1} \in G \Rightarrow g^{-2} \in H \text{ also } gh \in G$$

$$\Rightarrow (gh)^{2} \in H$$

$$\Rightarrow g^{-2} (gh) (gh) \in H$$

$$\Rightarrow g^{-1}hg \in H$$

$$\therefore \text{ H is normal in } G.$$

$$\therefore \text{ Correct option is (d)}$$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009