

Wronskian

...(3)

1.10 (1) LINEAR DEPENDENCE OF SOLUTIONS

Consider the initial value problem consisting of the homogeneous linear equation

$$y'' + py' + qy = 0$$
 ...(1)

with variable co-efficients p(x) and q(x) and two initial conditions $y(x_0) = k_0$, $y'(x_0) = k_1$...(2)

Lets its general solution be $y = c_1 y_1 + c_2 y_2$

which is made up of two linearly dependent solutions y_1 and y_2^* .

If p(x) and q(x) are continuous functions on some open interval *I* and x_0 is any fixed point on *I*, then the above initial value problem has a **unique solution** y(x) on the interval *I*.

(2) **Theorem.** If p(x) and q(x) are continuous on an open interval *I*, then the solutions y_1 and y_2 of (1) are

linearly dependent in *I* if and only if the Wronskian[†] $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = 0$ for some x_0 on *I*. If there is an

 $x = x_1$ in *I* at which $W(y_1, y_2) \neq 0$, then y_1, y_2 are linearly independent on *I*.

Proof : If y_1, y_2 are linearly dependent solutions of (1) then there exist two constants c_1, c_2 not both zero, such that $c_1y_1 + c_2y_2 = 0$...(4)

Differentiating w.r.t. $x, c_1 y'_1 + c_2 y'_2 = 0$ ENDEAVOUR Eliminating c_1, c_2 from (4) and (5), we get(5)

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = 0$$

Conversely, suppose $W(y_1, y_2) = 0$ for some $x = x_0$ on *I* and show that y_1, y_2 are linearly dependent. Consider the equation

$$c_{1}y_{1}(x_{0}) + c_{2}y_{2}(x_{0}) = 0$$

$$c_{1}y_{1}'(x_{0}) + c_{2}y_{2}'(x_{0}) = 0$$

...(6)

which, on eliminating c_1, c_2 gives $W(y_1, y_2) = \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{vmatrix} = 0$

Hence the system has a solution in which c_1 , c_2 are not both zero. Now introduce the function $\overline{y}(x) = c_1 y_1(x) + c_2 y_2(x)$.

Then y(x) is a solution of (1) on *I*. By (6), this solution satisfies the initial conditions $y(x_0) = 0$ and $y'(x_0) = 0$. Also since p(x) and q(x) are continuous on *I*, this solution must be unique. But $y \equiv 0$ is obviously another solution of (1) satisfying the given initial conditions. Hence $\overline{y} \equiv y$ i.e. $c_1y_1 + c_2y_2 \equiv 0$ in *I*. Now since c_1, c_2 are not both zero, it implies that y_1 and y_2 are linearly dependent on *I*.

Remark: (1) Let f and g be two differentiable function on an interval I and

- $W(f(x), g(x)) = \begin{vmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{vmatrix} \neq 0 \text{ for some } x \in I \text{ then } f(x) \text{ and } g(x) \text{ are linearly independent function.}$
- (2) Converse of (1) is not true for example, f(x) = x|x| and $g(x) = x^2$ are two linearly independent solution and $W(f,g) = 0 \quad \forall x \in \mathbb{R}$
- (3) If f(x) and g(x) are linearly dependent function then

$$W(f(x),g(x)) = \begin{vmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{vmatrix} = 0 \ \forall x \in I$$

- (4) Converse of (3) is not true for example, f (x) = x |x| and g (x) = x², W (f,g) = 0 ∀ x ∈ ℝ and f(x) and g(x) are two linearly independent solution.
- (5) Let y_1 and y_2 are two solution of an ODE. Then

 y_1 and y_2 are L.I $\Leftrightarrow W(y_1, y_2) \neq 0 \forall x$

 y_1 and y_2 are L.D $\Leftrightarrow W(y_1, y_2) = 0 \forall x$

ABEL'S THEOREM

Let $a_1, a_2, a_3, \dots, a_n$ be continuous functions on an interval I containing the point x_0

Let $\phi_1, \phi_2, \phi_3, \dots, \phi_n$ be *n* solution of ODE, $y^{(n)} + a_1(x) y^{(n-1)} + a_2(x) y^{(n-2)} + \dots + a_{n-1} y' + a_n y = 0$.

Then wronskin of solution $\phi_1, \phi_2, \dots, \phi_n$ is $W(x) = W(x_0)e^{-\int_{x_0}^x a_1(t)dt}$

Also $W(x) = ce^{-\int a_1(x)dx}$ where c is constant.

Example-1

Show that the two functions $\sin 2x$, $\cos 2x$ are independent solutions of y'' + 4y = 0.

Soln. Substituting $y_1 = \sin 2x$ (or $y_2 = \cos 2x$) in the given equation we find that y_1 , y_2 are its solutions.

Also $W(y_1, y_2) = \begin{vmatrix} \sin 2x & \cos 2x \\ 2\cos 2x & -2\sin 2x \end{vmatrix} = -2 \neq 0$

for any value of x. Hence the solutions y_1 , y_2 are linearly independent.

Previous Year Solved Problems

Example-2

Consider the following statements regarding the two solutions $y_1(x) = \sin x$ and $y_2(x) = \cos x$ of y'' + y = 0.

- (i) They are linearly dependent solutions of y'' + y = 0
- (ii) Their wronskian is 1
- (iii) They are linearly independent solutions of y'' + y = 0

which of the statements is true?

- (a) (i) and (ii) (b) (ii) and (iii)
- (c) (iii) (d)(i)

Soln. $y_1 = \sin, y_2 = \cos(x)$

$$W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \sin x & \cos(x) \\ \cos(x) & -\sin x \end{vmatrix} = -$$

 $\therefore w \neq 0 \Rightarrow y_1$ and y_2 are linearly independent

Statement (iii) is only true statement

: Option (c) is Correct

Example-3

Let $y_1(x)$ and $y_2(x)$ be two solutions of $(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + (\sec x) y = 0$ with Wronskian W(x). If $y_1(0) = 1, \left(\frac{dy_1}{dx}\right)_{x=0} = 0$ and $W\left(\frac{1}{2}\right) = \frac{1}{3}$, then $\left(\frac{dy_2}{dx}\right)_{x=0}$ equals [GATE-2006] (a) $\frac{1}{4}$ (b) 1 (c) $\frac{3}{4}$ (d) $\frac{4}{3}$

Soln.
$$(1+x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + \sec xy = 0 \Rightarrow \frac{d^2y}{dx^2} - \frac{2x}{1-x^2}\frac{dy}{dx} + \sec xy = 0$$

By Abel's theorem,
$$y'' + p(x)y' + Q(x) = 0$$

$$W(x) = c.e^{-\int p(x)dx} = c.e^{\int \frac{2x}{1-x^2}dx} = c.e^{-\int \frac{2x}{x^2-1}dx}$$

$$W(x) = c.e^{-\log|x^2-1|} = \frac{1}{x^2}$$

$$W(x) = \frac{c}{x^2 - 1}$$

Since
$$W\left(\frac{1}{2}\right) = \frac{1}{3} \Rightarrow \frac{1}{3} = \frac{c}{\frac{1}{4} - 1}$$

[D.U. 2015]

$$\Rightarrow \frac{1}{3} = \frac{-4}{3}c \Rightarrow c = \frac{-1}{4}$$

So, $W(x) = \frac{-1}{4(x^2 - 1)} = \frac{1}{4(1 - x^2)}$
 $W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} \Rightarrow W(0) = \begin{vmatrix} y_1(0) & y_2(0) \\ y'_1(0) & y'_2(0) \end{vmatrix} \Rightarrow \frac{1}{4} = \begin{vmatrix} 1 & y_2(0) \\ 0 & y'_2(0) \end{vmatrix}$
$$\Rightarrow \frac{1}{4} = y'_2(0) \Rightarrow \left(\frac{dy_2}{dx}\right)_{x=0} = \frac{1}{4}$$

Option (a) is Correct

Option (a) is Correct

Example-4

Given below four sets $\{f_1, f_2, f_3\}$ of functions defined on \mathbb{R} . Determine which set is linearly dependent

(a) $\{f_1(x) = x^2, f_2(x) = x^4, f_3(x) = x^{-2}\}$ (b) $\{f_1(x) = x, f_2(x) = x + 1, f_3(x) = x + 2\}$

(c) $\{f_1(x) = \cos x, f_2(x) = \sin x, f_3(x) = 1\}$ (d) $\{f_1(x) = e^x, f_2(x) = e^{-x}, f_3(x) = 1\}$ [CUCET-2016]

Soln.
$$W(f_{1,}f_{2},f_{3})(x) = \begin{vmatrix} f_{1}(x) & f_{2}(x) & f_{3}(x) \\ f_{1}' & f_{2}'(x) & f_{3}'(x) \\ f_{1}''(x) & f_{2}''(x) & f_{3}''(x) \end{vmatrix}$$

$$f_{1}(x) = x^{2}, f_{2}(x) = x^{4}, f_{3}(x) = \frac{1}{x^{2}}$$

$$W(x) = \begin{vmatrix} x^{2} & x^{4} & \frac{1}{x^{2}} \\ 2x & 4x^{3} & \frac{-2}{x^{3}} \\ 2 & 12x^{2} & \frac{6}{x^{4}} \end{vmatrix}$$

$$= x^{2} \times \left(\frac{24}{x} + \frac{24}{x}\right) - x^{4} \left(\frac{12}{x^{3}} + \frac{4}{x^{3}}\right) + \frac{1}{x^{2}} \left(2yx^{3} - 8x^{3}\right)$$

1

=48x-16x+16x=48x which is non zero for some $x \in \mathbb{R}$

 $\therefore \{f_1, f_2, f_3\}$ is linearly independent set

Also,
$$f_1(x) = x$$
, $f_2(x) = x + 1$, $f_3(x) = x + 2$

$$W(x) = \begin{vmatrix} x & x+1 & x+2 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix} = 0 \ \forall x \in \mathbb{R}$$

 $W(x) = 0 \quad \forall x \in \mathbb{R}$ but we cannot say anything

Also, there exists a = -1, b = 2, c = -1 such that

 $a f_1(x) + b f_2(x) + c f_3(x) = 0.$

Therefore, $\{f_1, f_2, f_3\}$ is linearly dependent

Now,
$$f_1(x) = \cos x, f_2(x) = \sin x, f_3(x) = 1$$

 $W(x) = \begin{vmatrix} \cos x & \sin x & 1 \\ -\sin x & \cos x & 0 \\ -\cos x & -\sin x & 0 \end{vmatrix} = 1 \neq 0 \ \forall \ x \in \mathbb{R}$

Therefore, $\{f_1, f_2, f_3\}$ is linearly independent set on $\mathbb R$

again,
$$f_1(x) = e^x$$
, $f_2(x) = e^{-x}$, $f_3(x) = 1$

$$W(x) = \begin{vmatrix} e^{x} & e^{-x} & 1 \\ e^{x} & -e^{-x} & 0 \\ e^{x} & e^{-x} & 0 \end{vmatrix} = 2 \neq 0 \ \forall x \in \mathbb{R}$$

Therefore, $\{f_1, f_2, f_3\}$ is linearly independent on \mathbb{R} .

Option (b) is Correct.

Example-5

Let f_1 and f_2 be two solutions of $a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = 0$, where a_0, a_1 and a_2 are continuous on [0, 1] and $a_0(x) \neq 0$ for all $x \in [0, 1]$. Moreover, let $f_1\left(\frac{1}{2}\right) = f_2\left(\frac{1}{2}\right) = 0$. Then **[D.U. 2016]** (a) one of f_1 and f_2 must be identically zero (b) $f_1(x) = f_2(x)$ for all $x \in [0, 1]$ (c) $f_1(x) = c f_2(x)$ for some constant c (d) none of these

CAREER ENDEAVOUR

Soln.
$$a_0(x)\frac{d^2y}{dx^2} + a_4(x)\frac{dy}{dx} + a_2(x)y = 0 \implies \frac{d^2y}{dx^2} + \frac{a_1(x)}{a_0(x)}\frac{dy}{dx} + \frac{a_2(x)}{a_0(x)}y = 0$$

We have, $f_1\left(\frac{1}{2}\right) = 0, f_2\left(\frac{1}{2}\right) = 0$

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) \\ f_1'(x) & f_2'(x) \end{vmatrix}$$

$$W\left(\frac{1}{2}\right) = \begin{vmatrix} f_1\left(\frac{1}{2}\right) & f_2\left(\frac{1}{2}\right) \\ f_1'\left(\frac{1}{2}\right) & f_2'\left(\frac{1}{2}\right) \end{vmatrix} = \begin{vmatrix} 0 & 0 \\ f_1'\left(\frac{1}{2}\right) & f_2'\left(\frac{1}{2}\right) \end{vmatrix} = 0$$

We know, f_1 and f_2 are solution of ODE than f_1 and f_2 are linearly dependent iff W(x) = 0 for some x.

Since
$$W(x) = 0$$
 for $x = \frac{1}{2}$

Therefore, $f_1(x)$ and $f_2(x)$ are linearly dependent solution of the given ODE

$$\Rightarrow f_1(x) = cf_2(x)$$
 for some constant c.

Option (c) is Correct

Example-6

For which of the following pair of functions $y_1(x)$ and $y_2(x)$, continuous functions p(x) and q(x) can be determined on [-1, 1] such that $y_1(x)$ and $y_2(x)$ give two linearly independent solutions of

$$y^{x} + p(x) y^{x} + q(x) y = 0, x \in [-1, 1]$$
(a) $y_{1}(x) = x \sin(x), y_{2}(x) = \cos(x)$
(b) $y_{1}(x) = xe^{x}, y_{2}(x) = \sin(x)$
(c) $y_{1}(x) = e^{x-1}, y_{2}(x) = e^{x} - 1$
(d) $y_{1}(x) = x^{2}, y_{2}(x) = \cos(x)$

Soln. y_1 and y_2 are two linearly independent solution of given ODE if and only if $w(x) \neq 0$ for all x.

$$w(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$

 $y_1 = x \sin x, \ y_2 = \cos x$

$$w(x) = \begin{vmatrix} x \sin x & \cos x \\ x \cos x + \sin x & -\sin x \end{vmatrix}$$

 $=-x\sin^2 x - x\cos^2 x - \cos x \sin x = -x - \cos x \sin x$ which is zero for x = 0

w(x) = 0 for $x = 0 \Rightarrow y_1 \& y_2$ are linearly dependent

[GATE-2007]

again, $y_1 = xe^x$, $y_1 = \sin x$

$$w(x) = \begin{vmatrix} xe^x & \sin x \\ (x+1)e^x & \cos x \end{vmatrix} = xe^x \cos x - xe^x \sin x + e^x \sin x$$

 $w(0) = 0 \Longrightarrow y_1 \& y_2$ are linearly dependent

Also,
$$y_1 = e^{x-1}$$
, $y_2 = e^x - 1$

$$w(x) = \begin{vmatrix} e^{x-1} & e^x - 1 \\ e^{x-1} & e^x \end{vmatrix} = e^{2x-1} - e^{2x-1} + e^{x-1} = e^{x-1} \text{ which is non-zero for all } x \in \mathbb{R}.$$

 $y_1 \& y_2$ are linearly independenet.

Also,
$$y_1 = x^2$$
, $y_2 = \cos(x)$
 $w(x) = \begin{vmatrix} x^2 & \cos(x) \\ 2x & -\sin x \end{vmatrix} = -x^2 \sin x - 2x \cos x$

 $w(0) = 0 \Longrightarrow y_1 \& y_2$ are linearly dependent

Option (c) is Correct

