Chapter
 7

Wronskian

1.10 (1) LINEAR DEPENDENCE OF SOLUTIONS

Consider the initial value problem consisting of the homogeneous linear equation

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=0 \tag{1}
\end{equation*}
$$

with variable co-efficients $p(x)$ and $q(x)$ and two initial conditions $y\left(x_{0}\right)=k_{0}$., $y^{\prime}\left(x_{0}\right)=k_{1}$
Lets its general solution be $y=c_{1} y_{1}+c_{2} y_{2}$
which is made up of two linearly dependent solutions y_{1} and $y_{2}{ }^{*}$.
If $p(x)$ and $q(x)$ are continuous functions on some open interval I and x_{0} is any fixed point on I, then the above initial value problem has a unique solution $y(x)$ on the interval I.
(2) Theorem. If $p(x)$ and $q(x)$ are continuous on an open interval I, then the solutions y_{1} and y_{2} of (1) are linearly dependent in I if and only if the Wronskian $W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=0$ for some x_{0} on I. If there is an $x=x_{1}$ in I at which $W\left(y_{1}, y_{2}\right) \neq 0$, then y_{1}, y_{2} are linearly independent on I.
Proof: If y_{1}, y_{2} are linearly dependent solutions of (1) then there exist two constants c_{1}, c_{2} not both zero, such that $c_{1} y_{1}+c_{2} y_{2}=0$

Differentiating w.r.t. $x, c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}=0$ ER ENDEAVOUR
Eliminating c_{1}, c_{2} from (4) and (5), we get

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=0
$$

Conversely, suppose $W\left(y_{1}, y_{2}\right)=0$ for some $x=x_{0}$ on I and show that y_{1}, y_{2} are linearly dependent.
Consider the equation

$$
\left.\begin{array}{l}
c_{1} y_{1}\left(x_{0}\right)+c_{2} y_{2}\left(x_{0}\right)=0 \tag{6}\\
c_{1} y_{1}^{\prime}\left(x_{0}\right)+c_{2} y_{2}^{\prime}\left(x_{0}\right)=0
\end{array}\right\}
$$

which, on eliminating c_{1}, c_{2} gives $W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\ y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)\end{array}\right|=0$
Hence the system has a solution in which c_{1}, c_{2} are not both zero.
Now introduce the function $\bar{y}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$.

Then $y(x)$ is a solution of (1) on I. By (6), this solution satisfies the initial conditions $y\left(x_{0}\right)=0$ and $y^{\prime}\left(x_{0}\right)=0$. Also since $p(x)$ and $q(x)$ are continuous on I, this solution must be unique. But $y \equiv 0$ is obviously another solution of (1) satisfying the given initial conditions. Hence $\bar{y} \equiv y$ i.e. $c_{1} y_{1}+c_{2} y_{2} \equiv 0$ in I. Now since c_{1}, c_{2} are not both zero, it implies that y_{1} and y_{2} are linearly dependent on I.
Remark : (1) Let f and g be two differentiable function on an interval I and
$W(f(x), g(x))=\left|\begin{array}{ll}f(x) & g(x) \\ f^{\prime}(x) & g^{\prime}(x)\end{array}\right| \neq 0$ for some $x \in I$ then $f(x)$ and $g(x)$ are linearly indepedent function.
(2) Converse of (1) is not true for example, $f(x)=x|x|$ and $g(x)=x^{2}$ are two linearly independent solution and $W(f, g)=0 \forall x \in \mathbb{R}$
(3) If $f(x)$ and $g(x)$ are linearly dependent function then

$$
W(f(x), g(x))=\left|\begin{array}{ll}
f(x) & g(x) \\
f^{\prime}(x) & g^{\prime}(x)
\end{array}\right|=0 \forall x \in I
$$

(4) Converse of (3) is not true for example, $f(x)=x|x|$ and $g(x)=x^{2}, W(f, g)=0 \forall x \in \mathbb{R}$ and $f(x)$ and $g(x)$ are two linearly independent solution.
(5) Let y_{1} and y_{2} are two solution of an ODE. Then
y_{1} and y_{2} are L.I $\Leftrightarrow W\left(y_{1}, y_{2}\right) \neq 0 \forall x$
y_{1} and y_{2} are L.D $\Leftrightarrow W\left(y_{1}, y_{2}\right)=0 \forall x$

ABEL'S THEOREM

Let $a_{1}, a_{2}, a_{3} \ldots, a_{n}$ be continuous functions on an interval I containing the point x_{0}.
Let $\phi_{1}, \phi_{2}, \phi_{3} \ldots . ., \phi_{n}$ be n solution of ODE, $y^{(n)}+a_{1}(x) y^{(n-1)}+a_{2}(x) y^{(n-2)}+\ldots .+a_{n-1} y^{\prime}+a_{n} y=0$.

Then wronskin of solution $\phi_{1}, \phi_{2}, \ldots \ldots ., \phi_{n}$ is $W(x)=W\left(x_{0}\right) e^{-\int_{x_{0}}^{x} a_{1}(t) d t}$

Also $W(x)=c e^{-\int a_{1}(x) d x}$ where c is constant.

Example-1

Show that the two functions $\sin 2 x, \cos 2 x$ are independent solutions of $y^{\prime \prime}+4 y=0$.
Soln. Substituting $y_{1}=\sin 2 x$ (or $\left.y_{2}=\cos 2 x\right)$ in the given equation we find that y_{1}, y_{2} are its solutions.
Also $\quad W\left(y_{1}, y_{2}\right)=\left|\begin{array}{rr}\sin 2 x & \cos 2 x \\ 2 \cos 2 x & -2 \sin 2 x\end{array}\right|=-2 \neq 0$
for any value of x. Hence the solutions y_{1}, y_{2} are linearly independent.

Previous Year Solved Problems

Example-2

Consider the following statements regarding the two solutions $y_{1}(x)=\sin x$ and $y_{2}(x)=\cos x$ of $y^{\prime \prime}+y=0$.
(i) They are linearly dependent solutions of $y^{\prime \prime}+y=0$
[D.U. 2015]
(ii) Their wronskian is 1
(iii) They are linearly independent solutions of $y^{\prime \prime}+y=0$
which of the statements is true?
(a) (i) and (ii)
(b) (ii) and (iii)
(c) (iii)
(d) (i)

Soln. $y_{1}=\sin , y_{2}=\cos (x)$
$W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}\sin x & \cos (x) \\ \cos (x) & -\sin x\end{array}\right|=-1$
$\therefore w \neq 0 \Rightarrow \mathrm{y}_{1}$ and y_{2} are linearly independent
Statement (iii) is only true statement

\therefore Option (c) is Correct

Example-3

Let $y_{1}(x)$ and $y_{2}(x)$ be two solutions of $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+(\sec x) y=0$ with Wronskian $W(x)$. If $y_{1}(0)=1,\left(\frac{d y_{1}}{d x}\right)_{x=0}=0$ and $W\left(\frac{1}{2}\right)=\frac{1}{3}$, then $\left(\frac{d y_{2}}{d x}\right)_{x=0}$ equals
[GATE-2006]
(a) $\frac{1}{4}$
(b) 1
(c) $\frac{3}{4}$
(d) $\frac{4}{3}$

Soln. $\quad\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\sec x y=0 \Rightarrow \frac{d^{2} y}{d x^{2}}-\frac{2 x}{1-x^{2}} \frac{d y}{d x}+\sec x y=0$
By Abel's theorem, $y^{\prime \prime}+p(x) y^{\prime}+Q(x)=0$
$W(x)=c . e^{-\int p(x) d x}=c . e^{\int \frac{2 x}{1-x^{2}} d x}=c \cdot e^{-\int \frac{2 x}{x^{2}-1} d x}$
$W(x)=c . e^{-\log \left|x^{2}-1\right|}=\frac{c}{x^{2}-1}$
$W(x)=\frac{c}{x^{2}-1}$
Since $W\left(\frac{1}{2}\right)=\frac{1}{3} \Rightarrow \frac{1}{3}=\frac{c}{\frac{1}{4}-1}$
$\Rightarrow \frac{1}{3}=\frac{-4}{3} c \Rightarrow c=\frac{-1}{4}$
So, $W(x)=\frac{-1}{4\left(x^{2}-1\right)}=\frac{1}{4\left(1-x^{2}\right)}$
$W(x)=\left|\begin{array}{ll}y_{1}(x) & y_{2}(x) \\ y_{1}^{\prime}(x) & y_{2}^{\prime}(x)\end{array}\right| \Rightarrow W(0)=\left|\begin{array}{ll}y_{1}(0) & y_{2}(0) \\ y_{1}^{\prime}(0) & y_{2}^{\prime}(0)\end{array}\right| \Rightarrow \frac{1}{4}=\left|\begin{array}{ll}1 & y_{2}(0) \\ 0 & y_{2}^{\prime}(0)\end{array}\right|$
$\Rightarrow \frac{1}{4}=y_{2}^{\prime}(0) \Rightarrow\left(\frac{d y_{2}}{d x}\right)_{x=0}=\frac{1}{4}$

Option (a) is Correct

Example-4

Given below four sets $\left\{f_{1}, f_{2}, f_{3}\right\}$ of functions defined on \mathbb{R}. Determine which set is linearly dependent
(a) $\left\{f_{1}(x)=x^{2}, f_{2}(x)=x^{4}, f_{3}(x)=x^{-2}\right\}$
(b) $\left\{f_{1}(x)=x, f_{2}(x)=x+1, f_{3}(x)=x+2\right\}$
(c) $\left\{f_{1}(x)=\cos x, f_{2}(x)=\sin x, f_{3}(x)=1\right\}$
(d) $\left\{f_{1}(x)=e^{x}, f_{2}(x)=e^{-x}, f_{3}(x)=1\right\}$
[CUCET- 2016]

Soln. $\quad W\left(f_{1,}, f_{2}, f_{3}\right)(x)=\left|\begin{array}{rrr}f_{1}(x) & f_{2}(x) & f_{3}(x) \\ f_{1}^{\prime} & f_{2}^{\prime}(x) & f_{3}^{\prime}(x) \\ f_{1}^{\prime \prime}(x) & f_{2}^{\prime \prime}(x) & f_{3}^{\prime \prime}(x)\end{array}\right|$
$f_{1}(x)=x^{2}, f_{2}(x)=x^{4}, f_{3}(x)=\frac{1}{x^{2}}$
$W(x)=\left|\begin{array}{ccc}x^{2} & x^{4} & \frac{1}{x^{2}} \\ 2 x & 4 x^{3} & \frac{-2}{x^{3}} \\ 2 & 12 x^{2} & \frac{6}{x^{4}}\end{array}\right|=x^{2} \times\left(\frac{24}{x}+\frac{24}{x}\right)-x^{4}\left(\frac{12}{x^{3}}+\frac{4}{x^{3}}\right)+\frac{1}{x^{2}}\left(2 y x^{3}-8 x^{3}\right)$
$=48 x-16 x+16 x=48 x$ which is non zero for some $x \in \mathbb{R}$
$\therefore\left\{f_{1}, f_{2}, f_{3}\right\}$ is linearly independent set

Also, $f_{1}(x)=x, f_{2}(x)=x+1, f_{3}(x)=x+2$
$W(x)=\left|\begin{array}{ccc}x & x+1 & x+2 \\ 1 & 1 & 1 \\ 0 & 0 & 0\end{array}\right|=0 \forall x \in \mathbb{R}$
$W(x)=0 \quad \forall x \in \mathbb{R}$ but we cannot say anything
Also, there exists $a=-1, b=2, c=-1$ such that
$a f_{1}(x)+b f_{2}(x)+c f_{3}(x)=0$.
Therefore, $\left\{f_{1}, f_{2}, f_{3}\right\}$ is linearly dependent
Now, $f_{1}(x)=\cos x, f_{2}(x)=\sin x, f_{3}(x)=1$
$W(x)=\left|\begin{array}{ccc}\cos x & \sin x & 1 \\ -\sin x & \cos x & 0 \\ -\cos x & -\sin x & 0\end{array}\right|=1 \neq 0 \forall x \in \mathbb{R}$
Therefore, $\left\{f_{1}, f_{2}, f_{3}\right\}$ is linearly independnet set on \mathbb{R}
again, $f_{1}(x)=e^{x}, f_{2}(x)=e^{-x}, f_{3}(x)=1$
$W(x)=\left|\begin{array}{ccc}e^{x} & e^{-x} & 1 \\ e^{x} & -e^{-x} & 0 \\ e^{x} & e^{-x} & 0\end{array}\right|=2 \neq 0 \forall x \in \mathbb{R}$

Therefore, $\left\{f_{1}, f_{2} f_{3}\right\}$ is linearly independnet on \mathbb{R}.
Option (b) is Correct .

CAREER ENDEAVOUR

Example-5

Let f_{1} and f_{2} be two solutions of $a_{0}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{2}(x) y=0$, where a_{0}, a_{1} and a_{2} are continuous on $[0,1]$ and $a_{0}(x) \neq 0$ for all $x \in[0,1]$. Moreover, let $f_{1}\left(\frac{1}{2}\right)=f_{2}\left(\frac{1}{2}\right)=0$. Then
[D.U. 2016]
(a) one of f_{1} and f_{2} must be identically zero
(b) $f_{1}(x)=f_{2}(x)$ for all $x \in[0,1]$
(c) $f_{1}(x)=c f_{2}(x)$ for some constant c
(d) none of these

Soln. $\quad a_{0}(x) \frac{d^{2} y}{d x^{2}}+a_{4}(x) \frac{d y}{d x}+a_{2}(x) y=0 \Rightarrow \frac{d^{2} y}{d x^{2}}+\frac{a_{1}(x)}{a_{0}(x)} \frac{d y}{d x}+\frac{a_{2}(x)}{a_{0}(x)} y=0$

We have, $f_{1}\left(\frac{1}{2}\right)=0, f_{2}\left(\frac{1}{2}\right)=0$
$W(x)=\left|\begin{array}{ll}f_{1}(x) & f_{2}(x) \\ f_{1}^{\prime}(x) & f_{2}^{\prime}(x)\end{array}\right|$
$W\left(\frac{1}{2}\right)=\left|\begin{array}{ll}f_{1}\left(\frac{1}{2}\right) & f_{2}\left(\frac{1}{2}\right) \\ f_{1}^{\prime}\left(\frac{1}{2}\right) & f_{2}^{\prime}\left(\frac{1}{2}\right)\end{array}\right|=\left|\begin{array}{cc}0 & 0 \\ f_{1}^{\prime}\left(\frac{1}{2}\right) & f_{2}^{\prime}\left(\frac{1}{2}\right)\end{array}\right|=0$

We know, f_{1} and f_{2} are solution of ODE than f_{1} and f_{2} are linearly dependent iff $W(x)=0$ for some x .
Since $W(x)=0$ for $x=\frac{1}{2}$

Therefore, $f_{1}(x)$ and $f_{2}(x)$ are linearly dependent solution of the given ODE
$\Rightarrow f_{1}(x)=c f_{2}(x)$ for some constant c.

Option (c) is Correct

Example-6

For which of the following pair of functions $y_{1}(x)$ and $y_{2}(x)$, continuous functions $p(x)$ and $q(x)$ can be determined on $[-1,1]$ such that $y_{1}(x)$ and $y_{2}(x)$ give two linearly independent solutions of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, x \in[-1,1]$
[GATE-2007]
(a) $y_{1}(x)=x \sin (x), y_{2}(x)=\cos (x)$
(b) $y_{1}(x)=x e^{x}, y_{2}(x)=\sin (x)$
(c) $y_{1}(x)=e^{x-1}, y_{2}(x)=e^{x}-1$
(d) $y_{1}(x)=x^{2}, y_{2}(x)=\cos (x)$

Soln. y_{1} and y_{2} are two linearly independent solution of given ODE if and only if $w(x) \neq 0$ for all x.
$w(x)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$
$y_{1}=x \sin x, y_{2}=\cos x$
$w(x)=\left|\begin{array}{cc}x \sin x & \cos x \\ x \cos x+\sin x & -\sin x\end{array}\right|$
$=-x \sin ^{2} x-x \cos ^{2} x-\cos x \sin x=-x-\cos x \sin x$ which is zero for $x=0$
$w(x)=0$ for $x=0 \Rightarrow y_{1} \& y_{2}$ are linearly dependent
again, $y_{1}=x e^{x}, y_{1}=\sin x$
$w(x)=\left|\begin{array}{cc}x e^{x} & \sin x \\ (x+1) e^{x} & \cos x\end{array}\right|=x e^{x} \cos x-x e^{x} \sin x+e^{x} \sin x$
$w(0)=0 \Rightarrow y_{1} \& y_{2}$ are linearly dependent
Also, $y_{1}=e^{x-1}, y_{2}=e^{x}-1$
$w(x)=\left|\begin{array}{cc}e^{x-1} & e^{x}-1 \\ e^{x-1} & e^{x}\end{array}\right|=e^{2 x-1}-e^{2 x-1}+e^{x-1}=e^{x-1}$ which is non-zero for all $x \in \mathbb{R}$.
$y_{1} \& y_{2}$ are linearly independenet.
Also, $y_{1}=x^{2}, y_{2}=\cos (x)$
$w(x)=\left|\begin{array}{ll}x^{2} & \cos (x) \\ 2 x & -\sin x\end{array}\right|=-x^{2} \sin x-2 x \cos x$
$w(0)=0 \Rightarrow y_{1} \& y_{2}$ are linearly dependenet
Option (c) is Correct

CAREER ENDEAVOUR

