VECTORS AND SCALARS

PART-A: IIT-JAM PREVIOUS YEARS QUESTION

1. A particle is in equilibrium under the action of three forces $\boldsymbol{P}, \boldsymbol{Q}$ and \boldsymbol{R}. If the angle between \boldsymbol{P} and \boldsymbol{Q} is 120° and that between \boldsymbol{Q} and \boldsymbol{R} is 135°, then the ratio of their magnitudes $P: Q: R$ is
(a) $2: \sqrt{3}+1: \sqrt{6}$
(b) $2: \sqrt{3}+1: \sqrt{2}$
(c) $\sqrt{6}: \sqrt{3}+1: 2$
(d) $2: \sqrt{6}: \sqrt{3}+1$
[JAM-2005]
2. The resultant of two forces of 20 N and 40 N is acting vertically at ' O ' as shown in the following figure. If the angle XOP is 30°, then the angle $\mathrm{X}^{\prime} \mathrm{OQ}$ is:
[JAM-2006]

(a) $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
(b) $\cos ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
(c) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
(d) $\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
3. If the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=2 \hat{i}+2 \hat{j}+p \hat{k}$ are coplanar, then the value of p is
(a) -2
(b) -1 CD C
(c) 1
(d) 2
[JAM-2008]
4. The angle between two linear transmembrane domains defined by the following vectors

$$
\begin{aligned}
& \vec{a}=\hat{i}+\hat{j}-\hat{k} \\
& \vec{b}=\hat{i}-\hat{j}+\hat{k}
\end{aligned}
$$

[JAM-2014]
is
(a) $\cos ^{-1}(-1 / 3)$
(b) $\cos ^{-1}(1 / 3)$
(c) $\sin ^{-1}(-1 / 3)$
(d) $\sin ^{-1}(1 / 3)$
5. Consider two vectors \mathbf{P} and \mathbf{Q} of equal magnitude. If the magnitude of $\mathbf{P}+\mathbf{Q}$ is two-times larger than that of $\mathbf{P}-\mathbf{Q}$, then the angle between them is
[JAM-2016]
(a) 107°
(b) 117°
(c) 127°
(d) 137°
6. Let $\vec{a}=4 \hat{i}-2 \hat{j}+6 \hat{k}$ and $\vec{b}=7 \hat{i}+\hat{j}-12 \hat{k}$. If $\vec{a} \times \vec{b}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}$, then the value of $\alpha+\beta+\gamma$ equals \qquad .
[JAM-2019]

PART-B: JNU BIOTECHNOLOGY PREVIOUS YEARS QUESTION

1. The vectors A and B are such that $|A+B|=|A-B|$, then the angle between the two vectors will be
(a) 0°
(b) 60°
(c) 90°
(d) 180° [JNU Biotech-2003]
2. Two force vectors of equal magnitude act in such a way that their resultant vector has a magnitude equal to the magnitude of either of the original forces. The angle (in degrees) between the original forces is
(a) 90
(b) 30
(c) 45
(d) 120
[JNU Biotech-2016]

PART-C: JNU LITE SCIENCES PREVIOUS YEARS QUESTION

1. All of the following are vector quantities EXCEPT
[JNU Life Sc.-2006]
(a) force
(b) velocity
(c) acceleration
(d) power

PART-D: TIFR PREVIOUS YEARS QUESTION

1. The minimum number of unequal non-zero length vectors which can add up to give a zero resultant is
(a) two
(b) three
(c) four
(d) five
[TIFR-2016]
2. Two forces of 7 Newtons each acting at 45 degrees to each other will have a resultant of approximately
(a) 6 Newtons
(b) 8 Newtons
(c) 10 Newtons
(d) 13 Newtons
[TIFR-2018]
CAREER ENDEAVOUR

Answer Key

IT-J AM

1. (a)
2. (b)
3. (a)
4. (b)
5. $\left.{ }^{*}\right)$
6. (126)

J NU BIOTECHNOLOGY

1. (c) 2. (d)

J NU LIFE SCIENCES

1. (d)

TIFR

1. (b)
2. (d)

Note: The asterisk sign '*' represents that the question(s) has/have one of the following issues:
(i) Wrong options
(ii) Insufficient information

