

IIT-JAM BIOTECHNOLOGY

ATOMIC STRUCTURE

PARTA: IIT-JAM PREVIOUS YEARS QUESTION

1.	If the ionization energy of H	ll be [JAM 2005]			
	(a) 13.59 eV	(b) 27.18 eV	(c) $(13.59)^2 \text{ eV}$	(d) 54.36 eV	
2.	The average distance of an e radius a_0) is	lectron from the nucleus in	the ground state of h	nydrogen atom (in units of Bohr [JAM 2005]	
	(a) 1	(b) 2	(c) 3/2	(d) 1/2	
3.	The ionization energy of a h is	nydrogen atom is 13.6 eV.	The first excitation	potential of the hydrogen atom [JAM 2006]	
	(a) higher than 13.6 eV		(b) lower than 13.	6 eV	
	(c) same		(d) twice the ionization	ation energy	
4.	The set of quantum number	cs, $n = 2, l = 2, m = 0$		[JAM 2007]	
5.	 (a) is forbidden (b) describes an electron in (c) describes an electron in (d) describes one of the five A hydrogen atom in the 3rd (a) 3 Lyman, 2 Balmer and (b) 2 Balmer and 1 Pascher (c) 2 Lyman and 1 Pascher 	h a $2d$ orbital h a $2p$ orbital re orbitals of similar type excited state can have d 1 Paschen transitions h transitions		[JAM 2007]	
<i>.</i>	(d) 2 Lyman, 3 Balmer and	1 1 Paschen transitions	DEAVOUR		
6.	The ionization energy for a (12.6 V)	hydrogen atom in its first	excited state $(n = 2)$) 1s [JAM 2008]	
_	(a) 13.6 eV	(b) 3.4 eV	(c) -3.4 eV	(d) -13.6 eV	
7.	de-Broglie wavelengths of t	wo electrons which start fr	rom rest and accelera	ited by potentials V and 4V are	
	λ_1 and λ_2 respectively. The	te ratio $\lambda_1 : \lambda_2$ is		[JAM 2008]	
	(a) 1:2	(b) 1:4	(c) 2 : 1	(d) 4:1	
8.	The difference in the numb	per of nodes for the quant	um numbers $n = 4$ a	and $n = 1$, for a $1 - D$ box is	
0	(a) 1	(b) 2	(c) 3	(d) 4 [JAM 2011]	
9.	The series that corresponds	to transition from higher	levels to $n = 4$ in the	[JAM 2012]	
	(a) Paschen	(b) Balmer	(c) Pfund	(d) Brackett	
10.	The radius of first "Bohr's stationary orbit" for hydrogen atom is 0.53Å. The radius of the second orbit is				
	(a) 1.06Å	(b) 1.59Å	(c) 2.12Å	[JAM 2013] (d) 4.24Å	

128)	Atomic Structure)				
11.	Calculate the wavelength of the alpha	Calculate the wavelength of the alpha particle, if its mass = 6.6×10^{-27} kg and velocity = 2×10^7 m/s.					
	Assume Planck's constant $h = 6.6 \times$	10^{-34} Js.		-	[JAM 2013]		
	(a) 5.0×10^{-12} m (b) 5.0×10^{-12} m	$\times 10^{-13} \text{ m}$ (c	c) 5.0×10^{-14} m	(d) 5.0	$ imes 10^{-15}$ m		
12.	Calculate the wavelength of the alpha	particle, if its ma	$ss = 6.6 \times 10^{-27} k_{\odot}$	g and vel	ocity = 2×10^7 m/s.		
	Assume Planck's constant $h = 6.6 \times$	10^{-34} Js.			[JAM 2013]		
	(a) 5.0×10^{-12} m (b) 5.0×10^{-12} m	$ < 10^{-13} m $ (c	c) 5.0×10^{-14} m	(d) 5.0	$\times 10^{-15} {\rm m}$		
13.	If an atomic orbital has 2 radial node	and 1 angular no	ode, it is a		[JAM 2014]		
	(a) $2p$ orbital (b) $3d$ or	bital (c	c) 3 <i>p</i> orbital	(d) 4 <i>p</i> o	rbital		
14.	The postulates of Bohr's theory of the	e atom are			[JAM 2014]		
	(I) Electrons move in stable circular	orbits around the n	ucleus				
	(II) Electrons may absorb light of spe	cific energy and b	e excited to higher	energy s	tates		
	(III) Angular momentum of electrons in	n stable orbits is qu	uantized				
	(IV) Angular momentum of electrons i	n stable orbits is ur	ncertain				
	(a) I, II, III and IV (b) I and	d II (d	c) I, II and III	(d) I, II	and IV		
15.	The speed of an electron (v) , in the lo	west energy orbit i	in the Bohr model	of the Hy	drogen atom divided		
	by the speed of light in vacuum (c) , i	given by (where	m is the mass of t	he electro	on, <i>M</i> is the mass of		
	proton, ε_0 is the permittivity of free s	pace, a_0 is the Bol	hr radius)		[JAM 2015]		
		0					
	(a) $\frac{v}{v} = \frac{1}{v} \frac{e^2}{v}$ (b) $\frac{v}{v} = \frac{1}{v} \frac{e^2}{v}$	e^4 (c	$\frac{v}{m} = \frac{m}{m}$	(d) $\frac{v}{-}=$	<u></u>		
	$ \begin{array}{ccc} (a) & c & 4\pi\varepsilon_0 \hbar c \end{array} \qquad \begin{array}{ccc} (b) & c \\ c & c \end{array} $	$32\pi^2\varepsilon_0^2\hbar^2c^2$	c M	(u) c	mca ₀		
16.	An alpha particle and a proton have the	e same de Broglie	e wavelength. Whi	ch of the	following is also the		
	same for the two particles if they are i	noving at non-rela	tivistic speeds?		[JAM 2016]		
	(a) Frequency (b) Kine	tic energy (c	c) Momentum	(d) Spee	ed		
17.	Two sources P and O produce electro	magnetic waves w	with wavelength λ	and 2λ .	respectively. Source		
	Pejects a photon with a maximum kin	etic energy of 4.0	eV from a metal w	ith work	function 2.0 eV The		
	maximum kinetic energy (eV) of a ph	a photon ejected by source Q from the same m			al is		
					[JAM 2017]		
18.	An X-ray tube operates at 30kV. If one	electron converts	10% of its energy	into a ph	oton at first collision.		
	then the wavelength of the photon (co	rrect to two decin	nal places) is		Å.		
	$h = 4.14 \times 10^{-15} \text{ eVs}^{-1}, c = 3 \times 10^{-15} \text{ eVs}^{-1}$	0^3 ms^{-1} and $e = 1$	1.6×10^{-19} C]		[JAM 2017]		
19.	The orbital angular momentum of hyd	rogen atom in the	ground state is	·			
	e i	C	h				
	(a) 0 (b) $\frac{n}{2\pi}$	(0	c) $\frac{n}{2}$	(d) <i>h</i>	[JAM 2019]		
20	Zn The with metional frequency (average ad		$\frac{2}{5}$	ama=1 A a a	when that the former		
20.	constant is same in both the cases vibra	ntional frequency (i	$(1100 \text{ m}^{-1}) \text{ of } ^2\text{D}^{35}\text{Cl} \text{ is}$	cm ⁻ . Ass	IJAM 2020		
21	Energy of the electron in hydrogen atom	in its ground state i	is 13.6 eV The ener	ov require	$\frac{1}{2}$ $\frac{1}$		
21.	electron from its ground state to the first	t excited state, rou	nded off to TWO de	ecimal pla	aces, is		
	C C			Ĩ	[JAM 2020]		
22.	The de Broglie wavelength of a proto		Å.				
	[Planck's constant = 6.626×10^{-34} m	2 kg/s; $m_{p} = 1.67$	× 10 ⁻²⁷ kg]		[JAM 2021]		
		Г					
		CAREER ENDEAVOUR					

23. The potential difference to accelerate an electron was quadrupled. By what factor does the *de Broglie* wavelength of the electron beam change_____ [JAM 2022]

PART B: JNU PREVIOUS YEARS QUESTION

1.	The quantum numbers <i>n</i> , <i>l</i> , m_1 and m_s for the two electrons of the helium atom in its ground state are					
	(a) 1, 0, 0, $\frac{1}{2}$	(b) 1, 0, 0, $-\frac{1}{2}$	(c) 1, 0, 0, $\pm \frac{1}{2}$	(d) 1, 1, 0, $\pm \frac{1}{2}$	[JNU-2003]	
	for both the electrons.					
2.	The amount of energy (a) $27 \cdot 2 \text{ eV}$	required to remove an e (b) 13.6 eV	electron from $n = 2$ state (c) 6.8 eV	of the hydrogen (d) 3·4 eV	atom is [JNU-2003]	
3.	The work function of emission from the subs (a) 540 nm	cause photoelectron [JNU-2003]				
4.	Which of the following (a) Electron (c) A molecule of meth	g has the smallest de Brog nane	glie wavelength? (b) Proton (d) A molecule of carbo	on dioxide	[JNU-2004]	
5.	The work function of a	a photoelectric material i	s 3.3 eV; the threshold fr	equency will be	equal to	
	(a) 8×10^4 Hz	(b) 8×10 ⁵⁶ Hz	(c) 8×10^{10} Hz	(d) 8×10^{14} Hz	[JNU-2005]	
6.	The ionization energy ionized lithium is $(a) -13.6 \text{ eV}$	for a hydrogen atom is 13 (b) –30.60 eV	3.6 eV. The energy of the (c) $-54.4 eV$	third lowest electric (d) -122.40 eV	ctronic level in doubly [JNU-2006] /	
7.	Four quantum number	rs n, l, m_1, m_2 of four er	ergy states of <i>p</i> -subshel	l of <i>M</i> -shell are a	s follows. Which one	
	is wrong combination?	, , , , , , , , , , , , , , , , , , ,			[JNU-2006]	
	(a) 3 1 1 1/2		(b) 3 1 1 1/2			
	3 1 0 1/2					
	3 1 1 1/2	LARCE	3 1 0 1/2	UR		
	3 1 0 -1/2		3 1 0 -1/2			
	(c) 3 1 0 1/2		(d) 3 1 1 1/2			
	3 1 1 1/2		3 1 -1 1/2			
	3 1 -1 1/2		3 1 0 1/2			
	3 1 -1 -1/2		3 1 1 -1/2			
8.	Which of the following (a) <i>n</i> - 3, <i>l</i> - 2, <i>m</i> 2, (c) <i>n</i> - 3, <i>l</i> - 2, <i>m</i> 3,	sets of quantum number $s - \frac{1}{2}$ $s - \frac{1}{2}$	rs is an impossible comb (b) <i>n</i> - 4, <i>l</i> - 0, <i>m</i> - 0, s (d) <i>n</i> - 5, <i>l</i> - 3, <i>m</i> - 0, s	ination? s- +1/2 s1/2	[JNU-2007]	
9.	A neutral atom has two of d electrons present (a) six	to electrons in $n = 1$, eight in the atom is (b) four	t electrons in $n = 2$ and si (c) one	x electrons in <i>n</i> = (d) zero	= 3 level. The number [JNU-2007]	

130		Aton	nic Structure			
10.	Balmer series arises in the hydrogen spectrum due to electron transitions in the atom from					
	(a) $n = 3, 4, 5, 6, 7$ to	[JNU-2007]				
	(c) $n = 4, 5, 6, 7$ to n	i = 3	(d) $n = 5, 6, 7, 8$ to p	i = 4		
11.	The normal Zeeman sp of 0.009 tesla is	plitting of the cadmium r	ed line of 6438 Å when t	he atoms are place	ced in a magnetic field [JNU-2007]	
	(a) $1.74 \times 10^{-3} \text{ Å}$	(b) 2.43×10^{-3} Å	(c) $4.62 \times 10^{-4} \text{\AA}$	(d) 2.59×10^{-2}	Å	
12.	Which of the following (a) Cs	g metals exhibits photoel (b) Na	ectric effect readily? (c) Li	(d) Mg	[JNU-2008]	
13.	Sodium and copper h wavelength is nearest t	ave work function 2.3	eV and 4.5 eV respect	ively. Then the	ratio of the threshold [JNU-2008]	
	(a) 1 : 1	(b) 2 : 1	(c) 4 : 1	(d) 1 : 4		
14.	Which of the following (a) O ₂	g has largest de-Broglie v (b) NH ₃	wavelength provided all (c) SO ₂	have equal veloc (d) N ₂	ity? [JNU-2008]	
15.	If the second Bohr's ra	dius of hydrogen atom is	s 4 a_0 , then the radius of	the fifth Bohr's o	orbit in hydrogen atom [JNU-2009]	
	(a) $5 a_0$	(b) 10 <i>a</i> ₀	(c) $20 a_0$	(d) $25 a_0$		
16.	If the kinetic energy of	a free electron doubles,	its de Broglie waveleng	th changes by th	e factor	
	(a) 2	(b) 1/2	(c) $\sqrt{2}$	(d) $1/\sqrt{2}$	[JNU-2009]	
17.	A moving electron has	energy 728 eV. Its velo	city is		[JNU-2009]	
	(a) 728 m/sec	(b) 1.6×10^{10} m/sec	(c) 1.6×10^7 m/sec	(d) None of th	ese	
18.	According to Schrodin (a) wave packet	nger, a particle is equival (b) single wave	lent to (c) light wave	(d) It is not a v	[JNU-2009] vave	
19.	Region of near IR is (a) 0.8 to 2.5μ	(b) 2.5 to 15µ	(c) 15 to 200µ	(d) None of th	[JNU-2009] ese	
20.	The size of nucleus of (a) 10^{-8}	an atom is of the order of $(b) \ 10^{-13}$	of (in cm) (c) 10^{-4}	(d)-10 ⁻⁶	[JNU-2009]	
21.	The maximum number (a) 14	r of electron in 5 <i>f</i> subleve (b) 18	el is (c) 32	(d) 36	[JNU-2009]	
22.	The spectrum resulting (a) line spectrum (c) band spectrum	g from blackbody radiati	on is (b) continuous spectru (d) line as well as banc	m l spectrum	[JNU-2010]	
23.	Splitting of spectral lin (a) Zeeman effect	es in an electric field is k (b) Compton effect	nown as (c) Stark effect	(d) Bohr effect	[JNU-2010]	
24.	The order of radius of	the nucleus of an atom i	S		[JNU-2011]	
	(a) 10^{-10} m	(b) 10^{-12} m	(c) 10^{-15} m	(d) 10^{-17} m		
25.	For the explanation of (a) quantization of linea (c) quantization of freq	the atomic structure, Bo ar momentum juency	bhr used (b) quantization of ang (d) quantization of ene	ular momentum rgy	[JNU-2011]	

26.	Normal Zeeman effect (a) strong electric field (c) weak electric field	t is due to	(b) strong magnetic field (d) weak magnetic field		[JNU-2011]	
27.	In the Bohr model of th	round state is a_0	, the radius of the orbit			
	of the $n = 3$ level is				[JNU-2012]	
	(a) $2a_0$	(b) $3a_0$	(c) $4a_0$	(d) $9a_0$		
28.	The de Broglie wavele (a) h/mv	ength of a particle of mas (b) <i>hmv</i>	ss m and velocity v is (c) mh/v	(d) <i>m/hv</i>	[JNU-2012]	
29.	The presence of three (a) Heisenberg uncerta (c) Hund rule	unpaired electrons in 2p inty principle	orbital of nitrogen follo (b) Aufbau principle (d) Pauli exclusion prin	ws	[JNU-2012]	
30.	de Broglie wavelength	of an electron moving wit	th a velocity of 5.3×10^6 r	n/s (mass of elec	$tron = 9.1 \times 10^{-31} \text{ kg}$	
	and Planck's constant	$= 6.6 \times 10^{-34} \text{ J} \text{ s}$) is			[JNU-2013]	
	(a) 0.0137 Å	(b) 0.137 Å	(c) 1.37 Å	(d) 13.7 Å		
31.	Calculate the energy	gy in kcal per mole	associated with a ra	diation of a w	vavelength 300 nm	
	$(h = 1.58 \times 10^{-37} \text{ kcal})$	$s, c = 3.0 \times 10^8 \mathrm{m}\mathrm{s}^{-1}$).			[JNU-2014]	
	(a) 90.49	(b) 94.09	(c) 99.04	(d) 109.49		
32.	The magnetic quantum (a) size	n number is related to (b) shape	(c) orientation	(d) spin	[JNU-2014]	
33.	When yellow light is in incident on the surface (a) no electrons are en (b) electrons of the sam	nile green light c mitted	an emit. If blue light is [JNU-2014]			
	(c) electrons of higher energy are emitted					
3/1	(d) electrons of lower (v of hydrogen atom is 1	212×10^6 Lmol ⁻¹ The	pergy required t	o excite the electron in	
54.	the atom from $n = 1$ to	[JNU-2014]				
	(a) $8.51 \times 10^5 \mathrm{J mol^{-1}}$	(b) $6.56 \times 10^5 \mathrm{J mol^{-1}}$	(c) $7.56 \times 10^5 \mathrm{J mol^{-1}}$	(d) 9.84×10^5	J mol ⁻¹	
35.	For photoelectric effect (a) have high intensity (c) satisfy both (a) and	et to occur, the incident li	ght should (b) have minimum thre (d) fall on the object fo	shold frequency or longer time	[JNU-2015]	
36.	The light of wavelength photoelectrons is given	h 5000 Å falls on a sensit 1 by	tive plate of work function	on 1.9 eV. The ki	netic energy of emitted [JNU-2015]	
	(a) 0.938×10^{-16} J	(b) $0.938 \times 10^{-19} \text{ J}$	(c) 0.938×10^{-22} J	(d) 2.002×10) ⁻¹⁶ J	
37.	The valence electron of	f_{29}^{63} Cu lies in the			[JNU-2016]	
	(a) K shell	(b) M shell	(c) N shell	(d) L	shell	

Ę

(132)			Atom	nic Structure				
38.	Suppose that in hydrogen atom the electron is in the $n = 2$ state. The minimum energy (in eV) required produce a H ⁺ ion will be [JNU-2016]							
	(a) 27.2	(b)	13.6	(c) 6.8		(d) 3.4		
39.	Number of f of	orbitals are				[JNU-2016]		
	(a) 5	(b) 3	3	(c) 7		(d) 14		
40.	The relation b	etween energy ()	E) and waveleng	$g(\lambda)$ is		[JNU-2016]		
	(a) $E = hc/\lambda$	(b) <i>I</i>	$E = h/\lambda$	(c) $E = h$	$c\lambda$	(d) $E = hc/\lambda^2$		
			Ans	swer Key				
			I	IT-JAM				
	1. (d)	2. (c)	3. (b)	4. (a)	5. (a)	6. (b)	7. (c)	
	8. (c)	9. (d)	10. (c)	11. (d)	12. (d)	13. (d)	14. (c)	
	15. (d)	16. (c)	17. (1ev)	18. (4.14 Å)	19. (a,b)	20. (2143.80)		
	21. (10.20)	22. (3967.66)	23. (0.5)					
				JNU				
	1. (c)	2. (d)	3. (c)	4. (d)	5. (d)	6. (a)	7. (a)	
	8. (c)	9. (d)	10. (a)	11. (a)	12. (a)	13. (b)	14. (b)	
	15. (d)	16. (d)	17, (c)	18. (a)	19. (a) UR	20. (b)	21. (a)	
	22. (b)	23. (c)	24. (c)	25. (b)	26. (d)	27. (d)	28. (a)	
	29. (c)	30. (c)	31. (b)	32. (c)	33. (c)	34. (d)	35. (b)	
	36. (b)	37.(c)	38. (d)	39. (c)	40. (a)			

