2

4.

5.

IIT-JAM BIOTECHNOLOGY

CHEMICAL KINETICS & PHOTOCHEMISTRY

PARTA: IIT-JAM PREVIOUS YEARS QUESTION

1. For a reaction $2A + B \rightarrow P$, by doubling the initial concentration of both the reactants the rate increases by a factor of 8, whereas by doubling the concentration of B alone the rate increases two times. The rate law for the reaction is [JAM 2005]

(a)
$$\frac{d[P]}{dt} = k[A][B]^2$$

(b) $\frac{d[P]}{dt} = k[A][B]$
(c) $\frac{d[P]}{dt} = k[A]^2[B]$
(d) $\frac{d[P]}{dt} = k[A]^2[B]^0$

The hydrolysis of ethyl acetate by acetic acid produced in the reaction also catalyzes the reaction. If the initial concentration of ethyl acetate is 'a' and that of acetic acid is 'b' and 'x' is the amount of ethyl acetate hydrolyzed at time 't'. The rate of reaction will be [JAM 2006]

(a)
$$k(a+x)(b+x)$$
(b) $k(a-x)(b+x)$ (c) $k(a-x)(b-x)$ (d) $k(a+x)(b-x)$

3. The rate equation for the reaction $2X + 3Y \rightarrow Z$ is *rate* = k[X][Y]. Consider the following statements **P**: The unit of *k* is mol L⁻¹s⁻¹

Q: The value of k is independent of k is independent of k and k is independent of k and	ndent of the initial concer	ntrati	ons of	f X and Y		[JAM 2007]
R: By doubling the concentrations of both <i>X</i> and <i>Y</i> , the rate is doubled						
Then, which one of the follo	owing is CORRECT?					
(a) P is true, Q is false, R	is false	(b)	P is	true, Q is	true, R is	false
(c) P is false, Q is true, R	is true	(d)	P is a	false, Q is	s true, R is	s false
A zero order reaction is 50%	6 complete in 30 minutes.	The	time ((in minute	s) from the	e start of the reaction
required for 80% completion	n is					[JAM 2007]
(a) 42	(b) 48	(c)	52		(d) 60	
The rate of reaction (r) is	s expressed as, $r = k[A]'$	[B]	ⁱ . The	e rate co	nstant (k)	for this reaction is
$2L^2 \operatorname{mol}^{-2} \operatorname{s}^{-1}$. The possible	e values of <i>m</i> and <i>n</i> are					[JAM 2008]
(a) 1 and 1		(b)	1 an	d 2		
(c) 1 and 3 (d) 1 and 4						

6. The graphs P, Q and R show the variation of rate constant (k) with temperature. The reactions represented by P, Q and R, respectively, are [JAM 2009]

- (a) P-Arrhenius type, Q an enzyme catalysed and R a chain reaction
- (b) P-an enzyme catalysed, Q-Arrhenius type and R- a chain reaction
- (c) P-Arrhenius type, Q a chain reaction and R an enzyme catalysed reaction
- (d) P-a chain reaction, Q an enzyme catalysed and R Arrhenius type reaction
- 7. The *correct* orders of the reactions deduced from the graphs given below, are

[JAM 2011]

- (a) P-First order, Q-Zero order, R-Half order
- (b) P-Zero order, Q-First order, R-Second order
- (c) P-Pseudo-first order, Q-Second order, R-Third order
- (d) P-Second order, Q-First order, R-Zero order
- 8. For the reaction, $N_2O_4(g) \Leftrightarrow 2NO_2(g)$, taking place in a closed container at a constant temperature, the rate constant k in terms of P_0 (pressure at time t = 0) and P_t (pressure at time t) is given by

[JAM 2012]

(a)
$$\frac{1}{t} \ln \frac{P_0}{2P_0 - P_t}$$
 (b) $\frac{1}{t} \ln \frac{P_0}{P_t}$ (c) $\frac{1}{t} \ln \frac{P_0}{P_0 - P_t}$ (d) $\frac{1}{t} \ln \frac{P_0}{P_0 - 2P_t}$

9. For the reaction, $A \rightarrow product$, match the order of the reaction in Group I with their corresponding linear plots in Group II [JAM 2012]

Group I

Group II

- P. Zero
 1. ln[A] versus time

 Q. First
 2. 1/[A] versus time

 R. Second
 3. [A] versus time

 (a) P-1, Q-2, R-3
 (b) P-2, Q-1, R-3

 (c) P-3, Q-1, R-2
 (d) P-1, Q-3, R-2
- 10. For a single-enzyme-substrate reaction, the half-life of the enzyme can be calculated using the following expression, wherein *k* is the first order rate constant or deactivation constant **[JAM 2013]**

(a)
$$\frac{693}{k}$$
 (b) $\frac{2.3 \log 2}{k}$ (c) $\frac{69.3}{k}$ (d) $\frac{2.3 \ln 2}{k}$

(134)

11.	For a reaction $aA + bB \rightarrow cC + dD$, the relation that	holds is	[JAM 2014]
	(a) $a\frac{d[A]}{dt} = b\frac{d[B]}{dt} = c\frac{d[C]}{dt} = d\frac{d[D]}{dt}$	(b) $a\frac{d[A]}{dt} = b\frac{d[B]}{dt} = -c\frac{d}{dt}$	$\frac{[C]}{dt} = -d\frac{d[D]}{dt}$
	(c) $\frac{1}{a}\frac{d[A]}{dt} = \frac{1}{b}\frac{d[B]}{dt} = \frac{1}{c}\frac{d[C]}{dt} = \frac{1}{d}\frac{d[D]}{dt}$	(d) $\frac{1}{a} \frac{d[A]}{dt} = \frac{1}{b} \frac{d[B]}{dt} = -\frac{1}{c}$	$\frac{d[C]}{dt} = -\frac{1}{d}\frac{d[D]}{dt}$
12.	The rate constant for the reaction $O(g) + O_3(g) \rightarrow 2$ constant in dm ³ mol ⁻¹ s ⁻¹ , would be	$2O_2(g)$ is 8.0×10^{-15} cm ³ mol	lecule ⁻¹ s ⁻¹ . The rate [JAM 2015]
	(a) 4.8×10^{-6} (b) 4.8×10^{6}	(c) 4.8×10^{-9} (d) 8.0	$\times 10^{6}$
13.	Match the equations in the left column with their nam	es in the right column	[JAM 2016]
	(i) $\ln k = \ln A - \frac{E_a}{RT}$	(p) Kirchhoff's law	
	(ii) $\ln K = -\frac{\Delta_r H^0}{RT} + \frac{\Delta_r S^0}{R}$	(q) van't Hoff equation	
	(iii) $\Delta_r H_2 - \Delta_r H_1 = \Delta C_p (T_2 - T_1)$	(r) Clausius-Clapeyron equa	ation
	(iv) $\ln P = -\frac{\Delta \overline{H}}{RT} + \text{ constant}$	(s) Arrhenius equation	
	(a) (i)-(s), (ii)-(r), (iii)-(p), (iv)-(q)	(b) (i)-(p), (ii)-(q), (iii)-(r), (iv)-(s)
	(c) (i)-(p), (ii)-(q), (iii)-(s), (iv)-(r)	(d) (i)-(s), (ii)-(q), (iii)-(p), ((iv)-(r)
14.	For an autocatalytic second order reaction $R \rightarrow P$, the	ne rate law is	[JAM 2017]
	[where <i>v</i> is rate of the reaction and <i>k</i> is the rate constant	t]	
	(a) $v = k[R]$ (b) $v = k[R][P]$ (c) $v =$	$k[\mathbf{R}]^2$ (d) $v = k[\mathbf{P}]^2$	
15.	The deactivation rate constant of an enzyme is 0.3461 first order kinetics, the half life of the enzyme in minut	h ⁻¹ . Assuming that the deactive ites is	ation process follows _ [JAM 2015]
16.	If a fossil that has been discovered recently contains of when the fossil was formed, then the age of the fossi	0.2% of the ¹⁴ C ($t_{1/2} = 5.730$ ye il in years is likely to fall in the	ears) that was present e range of
	(a) 25,000-35,000	(b) 35,000-45,000	[JAM 2019]
	(c) 45,000-55,000	(d) 55,000-65,000	
17.	The velocity of an enzyme-catalysed reaction following M equal to $0.3 \times K$ is equal to $\times V$ (round off to	lichaelis-Menten kinetics, at the s	substrate concentration [JAM 2019]
18.	In the second-order reaction $2A \rightarrow B$, the initial con	ncentration of A is 1.0 M and	after 30 minutes, the
	concentration A is 0.5 M. The rate constant of the reaction	on is L/mol/h (round or	ff to 2 decimal places) [JAM 2019]
19.	In this system of two reaction $A \rightarrow 2B$ and $B \rightarrow 2C$ steady-state?	, which of the following stater	nents is/are TRUE at
	(a) The rate of consumption of A is four times the rate	of production of C	[JAM 2019]
	(b) The rate of consumption of B is twice the rate of pr	roduction of C	
	(c) The rate of production of B is the same as the rate of	of consumption B	
• 6	(d) The rate of production of C is four times the rate of	consumption of A	2
20.	Which one of the following parameters changes upon do	bubling the enzyme concentration	on?
01	(a) $K_{\rm M}$ (b) $V_{\rm max}$	(c) K_{eq} (d) K_{eq}	[JAM 2019]
21.	In an enzyme catalyzed first-order reaction, the substrate 80% of the substrate is converted in 10 minutes. The rounded off to THREE decimal places, is	e conversion follows an expone e first-order rate constant (in n	ential pattern such that nin ⁻¹) of the reaction, [JAM 2020]

Ę

22.	For an enzyme following Michaelis-Menten kinetics, when $[S] = K_M$ then, the velocity v is						
	([S] is substrate co	oncentration, K_{M} is Mi	chaelis constant, $V_{_{max}}$	_x is maximal v	velocity)		
	(a) $[S] \times V_{max}$	(b) $0.75 \times V_m$	(c) $0.5 \times V$	$V_{\rm max}$ (d) K	$V_{M} \times V_{max}$ [JAM 2022]		
		PART B: JNU PRE	VIOUS YEARS QUI	ESTION			
1	The note of the needs	an 24 D. Disdoubl		of A is in an asso	d 1 fold If holf times of the		
1.	reaction with 0.2 M	Concentration of A is 25 r	ninutes how much it w	vill be when con	centration of A is 0.8 M^2		
	(a) 12.5 minutes	(b) 50 minutes	(c) 5 minutes	(d) $625 \min$	utes [JNU-2003]		
2	If 10% of a radioacti	ve material decays in 5 d	avs then the amount of	the original ma	iterial left after 20 days is		
2.	approximately	ve material accuys mo a	ays, then the uniount of	t the original me	[JNU-2003]		
	(a) 60%	(b) 65%	(c) 70%	(d) 75%			
3.	The half-life period of element remaining is	of a radioactive element i	s 19 hours. At the end o	of 57 hours the f	raction of the radioactive [JNU-2004]		
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{1}{16}$	(d) $\frac{1}{8}$			
4.	If concentrations are a first-order reaction	measured in moles per li ?	ter and time in seconds	what are the un	its of the rate constant for [JNU-2004]		
	(a) Liter	(b) Mole liter ⁻¹ sec ⁻¹	(c) Sec ⁻¹	(d) Mole ⁻¹ l	iter		
5.	The value of activation	on energy for a chemical	reaction is primarily det	termined by	[JNU-2004]		
	(a) temperature	(b) collision frequency	y (c) concentration	(d) nature o	f reactants		
6.	The K_m of an enzym	ne-catalysed reaction			[JNU-2004]		
	(a) is equal to the catalytic rate when all substrate sites are full						
	(b) describes the affinity of an enzyme for its substrate						
	(c) is independent of (d) is higher when the	the enzyme concentratio e enzyme binds its substr	n ate more tightly	OUR			
7.	For second-order rea	action, if the concentration	on of the reactants is do	oubled, the rate v	will [JNU-2005]		
	(a) be tripled	(b) stay the same	(c) be doubled	(d) be quad	rupled		
8.	The radioactive deca	y is the example of			[JNU-2005]		
	(a) first-order reaction	on	(b) zeroth order read	(b) zeroth order reaction			
	(c) second-order rea	ction	(d) third-order react	ion			
9.	Higher K_m value of	an enzyme often denotes			[JNU-2005]		
	(a) higher affinity of	the enzyme to the substra	te				
	(b) lower affinity of t	he enzyme to the substra	te				
	(c) affinity constant of	of the enzyme to the subst	trate analogue				
	(d) None of these						

10.	The rate constant of a	reaction is $5.4 \times 10^{-14} \text{ s}^{-1}$, Which of the followin	g is its $t_{1/2}$?	[JNU-2006]
	(a) 1.26×10^{10} s	(b) 2.0×10^{11} s	(c) 1.26×10^{13} s	(d) 1.26×10^{16}	S
11.	The half-life for the rea	action			[JNU-2007]
		1.			
	$N_2O_5 \rightleftharpoons 2NO_2 +$	$+\frac{1}{2}O_{2}$			
	is 24 hours at 30 °C. S	tarting with 10 g of N_2	D_{5} , how many grams of	N_2O_5 will rema	in after a period of 96
	hours?			2 5	L
	(a) 1.25 g	(b) 0.63 g	(c) 1.77 g	(d) 0.5 g	
12.	k_1 and k_2 are velocity	constants of forward an	d backward reactions. F	or this reaction e	quilibrium constant K
	is given by				[JNU-2008]
	(a) k_1/k_2	(b) $k_1 \cdot k_2$	(c) $k_1 + k_2$	(d) $k_1 - k_2$	
13.	Initial concentraion of	reactants is 4.0 g. The ha	alf-life period of the react	tion is 100 minut	es. In 400 minutes the
	amount remaining will	be	•		[JNU-2008]
	(a) 0.0 g	(b) 1.0 g	(c) 0.25 g	(d) 0.5 g	
14.	The unit of zero-order	rate constant is			[JNU-2009]
	(a) mol.lit ^{-1} .sec ^{-1}	(b) \sec^{-1}	(c) mol ⁻¹ lit.sec ⁻¹	(d) sec	
15.	For the second-order	reaction, $t_{1/2}$ is proporti	onal to		[JNU-2009]
	(a) 1/ <i>a</i>	(b) $1/a^2$	(c) constant	(d) <i>a</i>	
16.	A reaction of two diffe	erent reactants can never	r be a		[JNU-2009]
	(a) first-order reaction	L Contraction of the second	(b) second-order reac	tion	
	(c) unimolecular reaction	on	(d) bi-molecular reacti	on	
17.	The first-order reaction reaction will be	on requires 30 minutes	for 50% completion. Th	e time required	to complete the 75% [JNU-2009]
	(a) 45 minutes	(b) 15 minutes	(c) 60 minutes	(d) None of th	ese
18.	Radioactive decay foll	ows — kinetics.			[JNU-2010]
	(a) zero-order	(b) first-order	(c) second-order	(d) third-order	
19.	Half-life period of a ration?	idioactive isotope is 36 c	lays. How much time w	ould it take for 7	5% of its decomposi- [JNU-2011]
	(a) 18 days	(b) 72 days	(c) 54 days	(d) 108 days	
20.	In Lineweaver-Burk p	lot, the y intercept repre	sents		[JNU-2012]
	(a) $K_{\rm m} / V_{\rm max}$	(b) $1/K_{\rm m}$	(c) $1/V_{\rm max}$	(d) $V_{\text{max}} / K_{\text{m}}$	
21.	Match the following :				[JNU-2013]
	(A) Zero-order reaction	on	(i) litre ² mole ⁻² sec ⁻¹		
	(B) First-order reaction	n	(ii) litre mole ⁻¹ sec ⁻¹		
	(C) Second-order read	ction	(iii) \sec^{-1}		

Chemical Kinetics & P	Photochemistry
----------------------------------	----------------

38

	(D) Third-order reaction	on	(iv) mole litre ⁻¹ sec ⁻¹		
	(a) A-i, B-ii, C-iii, D	D-iv	(b) A-iv, B-iii, C-ii, D-i		
	(c) A-ii, B-iii, C-iv, D-i		(d) A-iv, B-ii, C-iii,	D-i	
22.	The half-life of ${}^{64}Cu$ i	s 12.83 hours. How muc	h time would it take to rea	ch the disintegrat	ion rate of 100 min^{-1}
	from 500 min ⁻¹ ?				[JNU-2013]
	(a) 0.054 hour	(b) 0.13 hour	(c) 28.5 hours	(d) 29.7 hours	
23.	In two different zero-o	order reactions $A \rightarrow P_1$	and $B \to P_2$, the rate of	f conversion of A	into product is twice
	that of B converted int of A reacted at the sam	o product. if 30% of B is ne time?	s converted into P_2 in 30	minutes, then wl	hat will be the amount [JNU-2013]
	(a) 15%	(b) 30%	(c) 45%	(d) 60%	
24.	The unit of rate consta	nt for zero-order reaction	on is		[JNU-2014]
	(a) lit sec ^{-1}	(b) lit mole ^{-1} sec ^{-1}	(c) mole $lit^{-1} sec^{-1}$	(d) mole sec^{-1}	l
25.	A sample of radioactive after 10 second is appr	e substance has 10 ⁶ nucle coximately	ei. Its half-life is 20 secon	d. The number o	f nuclei that will be left [JNU-2016]
	(a) 1×10^5	(b) 2×10^5	(c) 7×10^5	(d) 9 ×	× 10 ⁵
26.	When the substrate co	oncentration is much low	ver than K_m in an enzyme	e assay, the rate	[JNU-2017]
	(a) approaches V_{max}		(b) shows zero-or	der kinetics	
	(c) is proportional to s	substrate concentration	(d) is constant		

PART C: TIFR PREVIOUS YEARS QUESTION

In a reaction RA converts to PA in the presence of a catalyst. Two experiments were carried out and the concentration of RA and PA were followed in time. In one experiment, the catalyst was 100 μM and in another it was doubled. The data is shown in the graph below. Which of the following is not true? [TIFR-2010]

- (a) Curves M and N represent expriment one and curves L and O represent experiment two.
- (b) L and M represent product concentration and N and O represent reactant concentration.
- (c) Steady state concentration in both experiments is the same.
- (d) Curves L and N result from experiment one and curves M and O result from experiment two.

- The half life of radioactive P32 is 14.3 days. In how many weeks will the radioactivity fall to 1/16th of the original value [TIFR-2011]
 - (a) 8.2 weeks (b) 9.7 weeks (c) 7.6 weeks (d) None of these
- 3. An electron transfer reaction proceeds by diffusion along a solvent coordinate, followed by an electron tunneling event (see figure). If P_{solv} is the probability of the system diffusing from x^R to x^{++} and $P_{tunneling}$ is the probability of the electron tunneling then the rate constant for electron transfer is proportional to: [TIFR-2011]

У

4. Assuming completely equivalent parabolas (the equations of P_1 and P_2 are same except for a shift in coordinates), calculate the value of E_A^{\dagger} in terms of λ and ΔG^0 . [TIFR-2011]

5. The enthalpy of a reaction is plotted vs. its reaction coordinate below. Which of the following is true about the forward reaction ? [TIFR-2012]

		Chemical Kine	tics & Photochemistry		
	(a) The reaction is sp	ontaneous	(b) The reaction is end	lothermic	
	(c) A catalyst will not	t be useful for this reactio	n (d) All of the above		
6.	The half-life of a radi original value?	oactive element is 72 hou	urs. In how many days w	vill the radioactiv	vity fall to 1/32th of its [TIFR-2012]
	(a) 9 days	(b) 18 days	(c) 15 days	(d) 12 days	
7.	A molecule contains mass of the molecule	only nitrogen and oxyge is 92 g/mol, what is the n	n. 30.40% of this molect nolecular formula ?	ule of nitrogen (by mass). If the molar [TIFR-2012]
	(a) NO ₂	(b) N_2O_2	(c) N_2O_4	(d) NO	
8.	Which is the most like	ely rate constant for the r	eaction $X + 2Y \rightarrow XY_2$:	[TIFR-2013]
	(a) 9X $10^{-3} \sec^{-1}$	(b) $5X \ 10^{-3} \ M^{-2} \ sec^{-3}$	-1 (c) 6X 10 ⁻⁵ M sec ⁻¹	(d) $8X \ 10^{-4}$ M	M^{-2} sec
9.	The activity of an enz the maximum activity X and Y. X activates the bell curve. (a) Site X has high aff (c) Site X and Y have	yme is modulated by calc is at intermediate levels of he enzyme. Y inhibits the finity, Y has low affinity, the same affinity	cium. Oddly, the shape o of calcium. We know that enzyme. Which of the fo (b) Site X has low affir (d) Calcium is a divale	f the modulation there are two bir llowing mechani hity, Y ahas high nt cation	n is a bell curve, so that nding sites for calcium, isms might account for [TIFR-2013] affinity,
10.	An enzyme reaction of	bevs the Michaelis-Men	ten form	in cation	[TIFR-2013]
	$E + S \leftrightarrow E.S \rightarrow 1$	E+P			[]
	Which of the followin	ng curves best describes t	he amount of P as a func	tion of time:	
		$\begin{array}{c} A \\ P \\ \hline \\ C \\ A \\ C \\ A \\ C \\ A \\ C \\ A \\ C \\ C$	B P D P FAVO	T→	
	(a) A & C	(b) C alone $1 \rightarrow 1$	(c) B & C	(d) None of th	lese
11.	The unit of the rate co	onstant of a second-order	r process is:		[TIFR-2014]
	(a) mol $L^{-1} s^{-1}$	(b) s^{-1}	(c) $L \mod^{-1} s^{-1}$	(d) mol L^{-1}	
12.	$A + B \rightarrow C$ is an irreference of the start and the start	eversible reaction. I mix nd when half of b is cons	equal volumes of 2M A umed. What is the ratio of	with 1M b. I m of the final rate to	neasure the rate of the othe starting rate?

(a) 0 (b) 3:8 (c) 3:4 (d) 1:1 [TIFR-2014]

(d) None of these

14. The following rates were determined for a reaction in which A and B combine to give a product. What is the overall rate law of this reaction? [TIFR-2015]

[A]	[B]	Initial Rate	
0.5 M	0.5 M	10 M s ¹	
0.5 M	1.0 M	20 M s ¹	
0.25 M	0.5 M	5 M s ¹	
1.0 M	1.0 M	40 M s ¹	

- (a) Rate = $k [A]^2 [B]^2$ (b) Rate = $k [A]^2 [B]$ (c) Rate = $k [A] [B]^2$ (d) Rate = k [A] [B]
- 15. When investigating enzyme/substrate interaction, which of the following would be expected to show a linear relationship under constant conditions ? [TIFR-2015]
 - I. Rate of reaction against enzyme concentration in the presence of excess substrate
 - II. Rate of reaction against enzyme concentration with the amount of substrate limited
 - III. Amount of product against time, with the amount of substrate limited
 - IV. Rate of reaction against substrate concentration
 - (a) I only (b) I and II (c) III only (d) II and IV
- 16. The percentage (%) increase in the rate of a chemical reaction will be maximum when the temperature is increased from: **CAREER ENDEAVOUR** [TIFR-2016]
 - (a) 270 K to 280 K

(a) Competitive

- (b) 280 K to 290 K
- (c) 290 K to 300 K
- (d) In all these cases the increase will be the same
- 17. You are observing a chemical reaction $(R \rightarrow P)$ either in the absence or presence of an enzyme catalyst,

which has $K_M = 10^6 \mu M$. At euilibrium 20 moles of reactant and 2 moles of product are present in the uncatalysed reaction. What would the reactant and product concentrations be at equilibrium in the presence of the enzyme?

(a) R = 0, P = 22 [TIFR-2016] (b) R = 2, P = 20(c) R = 20, P = 2(d) This cannot be answered without knowing the reaction volume

18.	Reactions with positive free	energy change (ΔG_0)	>0) can be made to occu	ır by:	[TIFR-2017]	
	(a) coupling them with exerg	gonic reactions via a co	mmon intermediate			
	(b) manipulating the concentrations of products and reactants					
	(c) coupling them to hydroly	rsis of ATP				
	(d) All of the above					
19.	In an enzyme-catalysed reac	tion, if [S] = 10 K_{M} th	e velocity of the reaction	is about	[TIFR-2018]	
	(a) $0.9 V_{max}$		(b) 0.7 V _{max}			
	(c) $0.5 V_{max}$		(d) $0.1 V_{max}$			
20.	Consider a reversible reaction	$A \Longrightarrow B$ with forward	l and backward rate const	ants $k_{\perp} =$	$k = 1 \sec^{-1}$. Suppose	
	we start with a 1 molar solution of A. How long will be concentration of A take to reach 0.75 molar?					
	(a) 0.25 sec	C C	(b) $\ln\left(\frac{4}{3}\right) \sim 0.29s$	ec	[TIFR 2019]	
	(c) $\ln \sqrt{2} \sim 0.35 \text{sec}$		(d) It will never re	ach that co	oncentration	
21.	For an endothermic reaction, of the energy of activation wi	where ΔH represent ill be :	s the enthalpy of the reac	tion in kJ/n	nol, the minimum value [TIFR 2019]	
	(a) Less than ΔH	(b) Zero	(c) More than Δh	d) Equ	ual to ΔH	
22.	Two solutions of the same m cuvettes with path lengths 1 be the absorbance for the s	olecule, with concent cm and 2 cm, respec econd sample?	rations of 10 ⁻³ M and 5 > ctively. If the absorbance	< 10 ⁻⁴ M, a e for 1st sa	re kept in two different ample is 1.2, what will [TIFR 2020]	
	(a) 1.0	(b) 1.2	(c) 2.4	(d) 6.0		
23.	Which of the following state	ements are true?			[TIFR 2021]	
	(a) Vmax of an enzyme ren	nains constant with in	creasing enzyme concer	ntrations.		
	(b) K_{M} of an enzyme for a	substrate remains cor	stant with increasing er	izyme con	centrations.	
	(c) K_{M} of an enzyme for a	substrate increases w	ith increasing enzyme c	oncentrati	ons.	
24	(d) Both $K_{\rm M}$ and V max of a What does $K_{\rm pat}/V$ m signifi	an enzyme remains co	onstant with increasing (enzyme co	ITTED 20221	
24.	(a) Specificity of enzyme for	r different substrates	(b) Rate of produ	n St formati	[]]] F K 2022]	
	(c) Rate of substrate consu	mption	(d) Maximum rate	e of reaction	on	
25.	The rate of reaction for a s	econd order reaction	can be	e of feacta	[TIFR 2022]	
	(a) dependent on concentration	ation of one reactant				
	(b) dependent on concentration	ation of two reactants				
	(c) independent of product	concentration				
	(d) all of the above					

26. The data in the table below is collected for an enzyme-catalyzed reaction

[S] <i>mM</i>	$V_0(\mu \operatorname{mol.min}^{-1})$
8×10^{-6}	80
2×10^{-5}	140
8×10^{-5}	224
4×10^{-3}	277
2×10^{-2}	280
1×10^{-1}	279

What is the approximate Km of this enzyme?

(a)	$8 imes 10^{-6} \text{ mM}$	(b) $2.0 \times 10^{-5} \text{ mM}$
(c)	$8.0 imes10^{-5}~\mathrm{mM}$	(d) 2×10^{-2} mM

		A	nswer Key						
PARTA: IIT-JAM PREVIOUS YEARS QUESTION									
1. (c)	2. (b)	3. (d)	4. (b)	5. (b)	6. (a)	7. (b)			
8. (a)	9. (c)	10. (b)	11. (d)	12. (b)	13. (d)	14. (c)			
15. 120.17	min	16. (0.161)	17. (_)	18. (_)	19. (_)	20. (_)			
21. (_)	22. (c)								
	PA	RT B: JNU PRE	VIOUS YEA	RS QUESTIO	N				
1. (b)	2. (b)	3. (d)	4. (c)	5. (d)	6. (c)	7. (d)			
8. (a)	9. (b)	10. (c)	11.(b)	12. (a)	13. (c)	14. (a)			
15. (a)	16. (c)	17. (c)	18. (b)	19. (b)	20. (c)	21. (b)			
22. (d)	23. (d)	24. (c)	25. (c)	26. (c)					
	PAI	RT C: TIFR PRE	VIOUS YEA	RS QUESTIO	N				
1. (a)	2. (a)	3. (b)	4. (*)	5. (b)	6. (c)	7. (c)			
8. (b)	9. (a)	10. (b)	11. (c)	12. (b)	13. (b)	14. (d)			
15. (a)	16. (a)	17. (c)	18. (d)	19. (a)	20. (c)	21. (c)			
22. (b)	23. (b)	24. (a)	25. (d)	26. (a)					

[TIFR 2022]